Hesperornithoides miessleriis and the evolution of flight.

Primary blocks of Hesperornithoides specimen WYDICE-DML-001. Images taken by Levi Shinkle. From Hartman et al., 2019.

Birds originated from a theropod lineage more than 150 million years ago. Their evolutionary history is one of the most enduring and fascinating debates in paleontology. In recent years, several discovered fossils as well as innovative studies of living bird behavior, have enriched our understanding of early paravian evolution and flight origins. The discovered fossils demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system have a sequential and stepwise transformational pattern, with many arising early in dinosaur evolution, like the unusually crouched hindlimb for bipedal locomotion,the furcula and the “semilunate” carpal that appeared early in the theropod lineage.

The new paravian theropod, Hesperornithoides miessleriis, from the Late Jurassic Morrison Formation of east–central Wyoming, provides new clues about paravian relationships, as well as the acquisition of flight-related characters in stem avians. Nicknamed “Lori”, and with an estimated length of 89 cm, the new specimen is significantly smaller than other relatively complete theropods from the Morrison Formation. Hesperornithoides lived in a wetland environments with herbaceous plants, but no trees. The habitat, combined with limb proportions indicate that the new specimen was clearly terrestrial.

Association of skeletal elements of Hesperornithoides miessleriis assembled from 3D scans of specimen blocks. Scale bar = 6 cm. From Hartman et al., 2019

Hesperornithoides exhibits the following combination of characters: pneumatic jugal; short posterior lacrimal process; quadrate forms part of lateral margin of paraquadrate foramen; small external mandibular fenestra, humeral entepicondyle >15% of distal humeral width; manual ungual III subequal in size to ungual II; mediodistal corner of tibia exposed anteriorly. The holotype (WYDICE-DML-001) is a partially articulated skeleton consisting of an almost articulated skull, five cervical vertebrae, isolated anterior dorsal rib, portions of 12 caudal vertebrae, five chevrons, partial left scapula and coracoid, portions of the proximal left humerus and distal right humerus, left ulna and radius, radiale, semilunate carpal, left metacarpals I–III, manual phalanges III-2 and 3, manual unguals I, II, and III, ilial fragment, most of an incomplete femur, right and left tibiae and fibulae, left astragalus and calcaneum, portions of right and left metatarsal packets, left pedal phalanges III-1, III-2, III-3, IV-1, IV-2, IV-3, IV-4, and pedal unguals II and III and the proximal portion of IV. The cranial elements are preserved in a separate “skull block”, whereas the axial skeleton is distributed across three blocks.

The acquisition of powered flight in birds was preceded in the course of paravian evolution by a complex sequence of anatomical and functional innovations, and many characters associated with avian flight evolved in a terrestrial context. For this reason, a refined and robust phylogeny of paravians is imperative in order to elucidate the sequence of evolutionary stages that resulted in the acquisition of major avian traits.



Hartman S, Mortimer M, Wahl WR, Lomax DR, Lippincott J, Lovelace DM. 2019A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flightPeerJ 7:e7247 https://doi.org/10.7717/peerj.7247

Agnolin FL, Motta MJ, Egli FB, Lo Coco G, Novas FE. 2019. Paravian phylogeny and the dinosaur-bird transition: an overview. Frontiers in Earth Science 6:252 https://www.frontiersin.org/articles/10.3389/feart.2018.00252/full

One thought on “Hesperornithoides miessleriis and the evolution of flight.

  1. Pingback: Fossil Friday Roundup: July 12, 2019 | PLOS Paleo Community

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s