Introducing Caelestiventus hanseni.

A 3D printed model of Caelestiventus skull.

Pterosaurs were the first flying vertebrates appearing initially in Late Triassic. The group achieved high levels of morphologic and taxonomic diversity during the Mesozoic, with more than 200 species recognized so far. From the Late Triassic to the end of the Cretaceous, the evolution of pterosaurs resulted in a variety of eco-morphological adaptations, as evidenced by differences in skull shape, dentition, neck length, tail length and wing span. Because of the fragile nature of their skeletons the fossil record of pterosaurs is strongly biased towards marine and lacustrine depositional environments. Therefore, Triassic pterosaurs are extraordinarily rare and consists of fewer than 30 specimens, including single bones. With the single exception of Arcticodactylus cromptonellus from fluvial deposits in Greenland, the other specimens are known from marine strata in the Alps.

Pterosaurs have been divided into two major groups: “rhamphorhynchoids” and “pterodactyloids”. Rhamphorhynchoids are characterized by a long tail, and short neck and metacarpus. Pterodactyloids have a much larger body size range, an elongated neck and metacarpus, and a relatively short tail.

a, Schematic silhouette of a dimorphodontid pterosaur in dorsal view. b, Preserved skull and mandible elements of C. hanseni. From Brooks B. Britt et al., 2018.

Caelestiventus hanseni, from the Upper Triassic of North America, is the oldest pterosaur ever discovered, and it predates all known desert pterosaurs by more than 65 million years. The generic name comes from the Latin language: caelestis, ‘heavenly or divine’, and ventus, ‘wind’. The species name, ‘hanseni’, honors Robin L. Hansen, a geologist, who facilitated work at the Saints & Sinners Quarry.

The holotype, BYU 20707, includes the left maxilla fused with the jugal, the right maxilla, the right nasal, the fused frontoparietals, the right and left mandibular rami, the right terminal wing phalanx and three fragments of indeterminate bones. The maxilla, jugal, frontoparietal, and mandibular rami of the specimen are pneumatic. The unfused skull and mandibular elements suggest that BYU 20707 was skeletally immature or had indeterminate growth. Based on the relationship between the length of the terminal wing phalanges and wing span in other non-pterodactyloid pterosaurs the new taxon would have a wing span greater than 1.5 m.

The holotype specimen of Dimorphodon macronyx found by Mary Anning in 1828 (From Wikimedia Commons)

Caelestiventus hanseni is placed as sister taxon to Dimorphodon macronyx. Both share the following derived features: a ventral blade along the dentary that forms a rostral keel and becomes a flange distally; a diastema between the second large mandibular tooth and the following smaller teeth; the overall morphology of the maxilla; the shape of the external naris and antorbital fenestra; the external naris by far the largest skull opening; the orbit smaller than the antorbital fenestra; and teeth with bicuspid apices. But despite their morphological similarity, C. hanseni and D. macronyx lived in very different environments. Dimorphodon, discovered by Mary Anning, was an island dweller in a humid climate and was preserved in the marine Blue Lias of southern England.

The significance of C. hanseni lies in its exceptional state of preservation, and its close phylogenetic relationship with Dimorphodon macronyx, indicating that dimorphodontids originated by the Late Triassic and survived the end-Triassic extinction event.

 

References:

Brooks B. Britt et al. Caelestiventus hanseni gen. et sp. nov. extends the desert-dwelling pterosaur record back 65 million years, Nature Ecology & Evolution (2018). DOI: 10.1038/s41559-018-0627-y

Advertisements

Learning from Past Climate Changes

In the last 540 million years, five mass extinction events shaped the history of the Earth. Those events were related to extreme climatic changes and were mainly caused by asteroid impacts, massive volcanic eruption, or the combination of both.  On a global scale the main forces behind climatic change are: solar forcing, atmospheric composition, plate tectonics, Earth’s biota, and of course, us. Human activity is a major driver of the dynamics of Earth system. From hunter-gatherer and agricultural communities to the highly technological societies of the 21st century, humans have driven the climate Earth system towards new, hotter climatic conditions. Until the Industrial Revolution, the average global CO2 levels fluctuated between about 170 ppm and 280 ppm. But with the beginning of the Industrial Era, that number risen above 300 ppm, currently averaging an increase of more than 2 ppm per year. The average monthly level of CO2 in the atmosphere in last April exceeded the 410 ppm for first time in history. Thus we could hit an average of 500 ppm within the next 45 years, a number that has been unprecedented for the past 50–100+ million years according to fossil plant-based CO2 estimates. This current human-driven change far exceed the rates of change driven by geophysical or biosphere forces that have altered the Earth System trajectory in the past, and it poses severe risks for health, economies and political stability. Learning from past climatic changes is critical to our future.

Planktonic foraminifera from the Sargasso Sea in the North Atlantic Ocean. (Photograph courtesy Colomban de Vargas, EPPO/SBRoscoff.)

Microfossils from deep-sea are crucial elements for the understanding of our past and present oceans. Their skeletons take up chemical signals from the sea water, in particular isotopes of oxygen and carbon. Over millions of years, these skeletons accumulate in the deep ocean to become a major component of biogenic deep-sea sediments. The importance of microfossils as tool for paleoclimate reconstruction was recognized early in the history of oceanography. John Murray, naturalist of the CHALLENGER Expedition (1872-1876) found that differences in species composition of planktonic foraminifera from ocean sediments contain clues about the temperatures in which they lived. The ratio of heavy and light Oxygen in foraminifera shells can reveal how cold the ocean was and how much ice existed at the time the shell formed. Another tool to reconstruct paleotemperatures is the ratio of magnesium to calcium (Mg/Ca) in foraminiferal shells. Mg2+ incorporation into foraminiferal calcite  is influenced by the temperature of the surrounding seawater, and the Mg/Ca ratios increase with increasing temperature.

Diatoms and radiolarians are susceptible to different set of dissolution parameters than calcareous fossils, resulting in a different distribution pattern at the sea floor and have been used for temperature estimates in the Pacific and in the Antarctic Oceans, especially where calcareous fossils are less abundant. Diatom assemblages are also used in reconstructions of paleoproductivity.

Scanning electron microscope image of different types of pollen grains. Image from Wikipedia.

Pollen and other palynomorphs proved to be an extraordinary tool to paleoenvironmental reconstruction too. Pollen analysis involves the quantitative examination of spores and pollen at successive horizons through a core, specially in lake, marsh or delta sediments, especially in Quaternary sediments where the parent plants are well known. This provide information on regional changes in vegetation through time, and it’s also a valuable tool for archaeologists because it gives clues about man’s early environment and his effect upon it.

Stomatal frequency of land plants, which has been shown in some species to vary inversely with atmospheric pCO2, has been used to estimate paleo-pCO2 for multiple geological time periods. Stomata are the controlled pores through which plants exchange gases with their environments, and play a key role in regulating the balance between photosynthetic productivity and water loss through transpiration.

Temple I on The Great Plaza and North Acropolis seen from Temple II in Tikal, Guatemala. From Wikimedia Commons

Paleoecological records indicate that the transition to agriculture was a fundamental turning point in the environmental history of Mesoamerica. Tropical forests were reduced by agricultural expansion associated with growing human populations. Also soil loss associated with deforestation and erosion was one of the most consequential environmental impacts associated with population expansion in the Maya lowlands. This environmental crisis ended with the collapse of the Classic Maya society.

Human activity has significantly altered the climate in less than a century. Since 1970 the global average temperature has been rising at a rate of 1.7°C per century, and the rise in global CO2 concentration since 2000 is 10 times faster than any sustained rise in CO2 during the past 800,000 years. Today the most politically unstable countries are also places where environmental degradation affected food production and water supply. Other human societies have succumbed to climate change – like the Akkadians – while others have survived by changing their behavior in response to environmental change. We have the opportunity to protect the future of our own society by learning from the mistakes of our ancestors.

References:

David Evans, Navjit Sagoo, Willem Renema, Laura J. Cotton, Wolfgang Müller, Jonathan A. Todd, Pratul Kumar Saraswati, Peter Stassen, Martin Ziegler, Paul N. Pearson, Paul J. Valdes, Hagit P. Affek. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences, 2018; 201714744 DOI: 10.1073/pnas.1714744115

Nicholas P. Evans et al., Quantification of drought during the collapse of the classic Maya civilization, Science (2018); DOI: 10.1126/science.aas9871 

Will Steffen, et al.; Trajectories of the Earth System in the Anthropocene; PNAS (2018) DOI: 10.1073/pnas.1810141115

Lingwulong shenqi, the “Amazing Dragon”, and the dispersal of Sauropods.

Skeletal reconstruction and exemplar skeletal remains of Lingwulong shenqi. Scale bars = 100 cm for a and 5 cm for b–o. From Xu et al., 2018

Sauropods were the largest terrestrial vertebrates. Their morphology is easy recognizable: a long, slender neck and a tail at the end of a large body supported by four columnar limbs. Sauropods dominated many Jurassic and Cretaceous terrestrial faunas. Although they were globally distributed, the absence of Diplodocoidea from East Asia has been interpreted as a biogeographic pattern caused by the Mesozoic fragmentation of Pangea. However, a newly discovered dinosaur from the Middle Jurassic of northern China suggests that Sauropods dispersed and diversified earlier than previously thought.

Lingwulong shenqi — literally the “amazing dragon from Lingwu” — is the first well-preserved confirmed diplodocoid from East Asia (23 synapomorphies support the placement of Lingwulong within Diplodocoidea with 10 of these being unequivocal). The holotype, (LM) V001a, is a partial skull comprising the braincase, skull roof, and occiput, and an associated set of dentary teeth. The paratype, (LGP) V001b, comprises a semi-articulated partial skeleton including a series of posterior dorsal vertebrae, complete sacrum, the first caudal vertebra, partial pelvis, and incomplete right hind limb.

An artist’s interpretation of what Lingwulong shenqi (Image: Zhang Zongda)

The Lingwulong specimens were found in the Yanan Formation at Ciyaopu, in northwest China. This formation has been divided in four or five members. Although, no radiometric constraints have been obtained for the Yanan Formation, its age has been estimated on the basis of biostratigraphy. The presence of a conchostracans assemblage (including Palaeoleptoestheria, Triglypta, and Euestheria) is indicative of a Middle Jurassic age.

The East Asian Isolation Hypothesis (EAIH) has become a well-established explanation of profound differences between Jurassic (and sometimes Early Cretaceous) Asian terrestrial faunas, that resulted in the evolution of endemic groups such as mamenchisaurid sauropods, and the early diverging lineage of tetanurans, oviraptorosaurs, therizinosaurs. In this model, the isolation ended in the Early Cretaceous when marine regressions allowed the invasion of groups from elsewhere in Pangaea, and the dispersal of Asian endemics (e.g., oviraptorosaurs, marginocephalians) into Europe and North America. However, it was claimed that diplodocoids never took part in these dispersals because the end-Jurassic extinction that greatly reduced their diversity and geographic range in the Early Cretaceous. The discovery of Lingwulong undermines the EAIH, forcing a significant revision of hypotheses concerning the origins and early radiation of Neosauropoda.

 

References:

Xing Xu, Paul Upchurch, Philip D. Mannion, Paul M. Barrett, Omar R. Regalado-Fernandez, Jinyou Mo, Jinfu Ma and Hongan Liu. 2018. A New Middle Jurassic Diplodocoid Suggests An Earlier Dispersal and Diversification of Sauropod Dinosaurs. Nature Communications.9, 2700.  DOI:  10.1038/s41467-018-05128-1 

 

 

 

Introducing Akainacephalus johnsoni

Skeletal reconstructions of Akainacephalus johnsoni. From Wiersma and Irmis, 2018

The Ankylosauria is a group of herbivorous, quadrupedal, armoured dinosaurs subdivided in two major clades, the Ankylosauridae and the Nodosauridae. The group is predominantly recorded from the Late Cretaceous (Turonian—late Maastrichtian) of Asia and the last Cretaceous (early Campanian—late Maastrichtian) of western North America (Laramidia). Ankylosauridae were present primarily in Asia and North America, and the most derived members of this clade are characterized by shortened skulls, pyramidal squamosal horns, and tail clubs.

Akainacephalus johnsoni, a new genus and species of an ankylosaurid dinosaur from the upper Campanian Kaiparowits Formation of southern Utah, represents the most complete ankylosaurid specimen from southern Laramidia to date, and reveals new details about the diversity and evolution of this clade. The genus name is derived from the Greek akaina, meaning “thorn” or “spine,” referring to the thorn-like cranial caputegulae of the holotype; and “cephalus,” the Greek meaning for head. The specific epithet honors Randy Johnson, volunteer preparator at the Natural History Museum of Utah.

Skull of Akainacephalus johnsoni. From Wiersma and Irmis, 2018

The holotype (UMNH VP 20202) is a partial skeleton comprising a complete skull, both mandibles, predentary, four dorsal, four dorsosacral, three sacral, one caudosacral, and eight caudal vertebrae, dorsal ribs, a complete tail club, both scapulae, left coracoid, right humerus, right ulna, partial left ilium, left femur, left tibia, left fibula, phalanx, two partial cervical osteoderm half rings, and 17 dorsal and lateral osteoderms of various sizes and morphologies.

The most striking feature of Akainacephalus johnsoni is the skull ornamentation comprising several symmetrical rows of small pyramidal and conical caputegulae along the dorsolateral surface of the skull. The postorbital horns are dorsoventrally tall, backswept, and project laterally in dorsal view. The quadratojugal horns display an  asymmetrical triangular morphology with a vertically positioned apex. Only a partial squamosal horn is preserved, but is largely broken.

Life reconstruction of Akainacephalus johnsoni (Image credit: Andrey Atuchin and the Denver Museum of Nature & Science)

The unique anatomical features of Akainacephalus johnsoni indicate a close taxonomic relationship with Nodocephalosaurus kirtlandensis, that clearly distinguish them from other Late Cretaceous Laramidian (although both taxa are temporally separated by nearly three million years). Because both taxa a more closely related to Asian ankylosaurids, the geographic distribution of Late Cretaceous ankylosaurids throughout the Western Interior could be the result of several geologically brief intervals of lowered sea level that allowed Asian ankylosaurid dinosaurs to immigrate to North America several times during the Late Cretaceous. The dispersal of ankylosaurids into Laramidia is coeval with the dispersal of other dinosaur clades, like tyrannosaurids and ceratopsians. The climate gradients and the fluctuations in sea level, may have helped reinforced Campanian provincialism.

 

References:

Wiersma JP, Irmis RB. (2018) A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA. PeerJ 6:e5016 https://doi.org/10.7717/peerj.5016

Arbour, V. M.; Currie, P. J. (2015). “Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs”. Journal of Systematic Palaeontology: 1–60. doi: 10.1080/14772019.2015.1059985

Ingentia prima, the first giant

Skeletal anatomy of Ingentia prima (From Apaldetti et al., 2018)

During the Late Triassic period numerous extinctions, diversifications and faunal radiations changed the ecosystem dynamics throughout the world. Followed the extinction of rhynchosaurs in most, or all, parts of the world, there was a burst of dinosaurian diversity in the late Carnian, represented by the upper Ischigualasto Formation and coeval units, with mostly carnivorous small- to medium-sized dinosaurs. Then, the long span of the early Norian, from 228.5–218 Ma, during which dicynodonts and sauropodomorph dinosaurs were the major herbivores.

Sauropods evolved from small, gracile, bipedal forms, and it was long thought that acquisition of giant body size in this clade occurred during the Jurassic and was linked to several skeletal modifications. Ingentia prima — literally the “first giant” in Latin — from the Late Triassic of Argentina shed new lights on the origin of gigantism in this group. The holotype, PVSJ 1086, composed of six articulated posterior cervical vertebrae, glenoid region of right scapula and right forelimb lacking all phalanges, has been recovered from the southern outcrops of the Quebrada del Barro Formation, northwestern Argentina. Discovered in 2015 by Diego Abelín and a team led by Cecilia Apaldetti of CONICET-Universidad Nacional de San Juan, Argentina, this new fossil weighed up to 11 tons and measured up to 32 feet (10 meters) long.

Bones of Ingentia prima (Image credit: Cecilia Apaldetti, CONICET-Universidad Nacional de San Juan, Argentina)

Ingentia was unearthed with three new specimens of Lessemsaurus sauropoides. The four dinosaurs belongs to the clade Lessemsauridae, that differs from all other Sauropodomorpha dinosaurs in possessing robust scapulae with dorsal and ventral ends equally expanded; slit-shaped neural canal of posterior dorsal vertebrae; anterior dorsal neural spines transversely expanded towards the dorsal end; a minimum transverse shaft width of the first metacarpal greater than twice the minimum transverse shaft of the second metacarpal; and bone growth characterized by the presence of thick zones of highly vascularized fibrolamellar bone, within a cyclical growth pattern.

The age of the oldest lessemsaurid (mid-Norian) indicates the appearance of an early trend towards large body size at least 15 Myr earlier than previously thought. For a long time, gigantism in eusauropods has been proposed as the result of a complex interplay of anatomical, physiological and reproductive intrinsic traits. For example, the upright position of the limbs has been highlighted as a major feature of the sauropodomorph bauplan considered an adaptation to gigantism. However Lessemsaurids lacked the purported adaptations related to a fully erect forelimb and the marked modifications of the hindlimb lever arms in eusauropods, showing that these features were not strictly necessary for the acquisition of gigantic body size. Another feature interpreted as a key acquisition was the elongated neck. However, lessemsaurids also lacked an elongated neck as they had proportionately short cervical vertebrae, indicating that the neck elongation was not a prerequisite for achieving body sizes comparable to those of basal eusauropods or gravisaurians.

 

References:

Cecilia Apaldetti, Ricardo N. Martínez, Ignacio A. Cerda, Diego Pol and Oscar Alcober (2018). An early trend towards gigantism in Triassic sauropodomorph dinosaurs. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-018-0599-y

Triassic World: Rise of the Kingdom

Eoraptor lunensis, outcropping from the soil. Valle de la Luna (Moon Valley), Parque Provincial Ischigualasto, Provincia de San Juan, Argentina.

“Jurassic World: Fallen Kingdom” has finally been released, but don’t worry, this post is spoiler free. I just use the hype to the tell the story of the rise of dinosaurs to ecological dominance.

There have been many opinions about the origin of the dinosaurs. In the competitive model the success of dinosaurs was explained in terms of their upright posture, predatory skills, or warm-bloodedness. In the opportunistic model, dinosaurs emerged in the late Carnian or early Norian, and then diversified explosively. The current view contains some aspects of both the classic competition model and the opportunistic model. In this model, the crurotarsan-dominated faunas were replaced by a gradual process probably accelerated by the ecological perturbation of the CPE (Carnian Pluvial Episode).

Early-late Carnian (Late Triassic) palaeogeographic reconstruction showing some of the main vertebrate-bearing units (From Bernardi et al. 2018)

The CPE is often described as a shift from arid to more humid conditions (global warming, ocean acidification, mega-monsoonal conditions, and a generalised increase in rainfall). The widespread extinction caused by the CPE was followed by the first substantial diversification of dinosaurs. That diversification can in fact be
divided into three phases: (1) the possible origin in the Olenekian-Anisian (248–245 Ma) related to the turmoil of recovering life in the aftermath of the devastating Permian-Triassic mass extinction (PTME), (2) a rapid diversification of saurischians, primarily sauropodomorphs and possible theropods, termed the dinosaur diversification event (DDE), at 232 Ma, and (3) a further diversification of theropods and especially ornithischians after the end-Triassic mass extinction, 201 Ma.

In Tanzania, the Manda Beds yielded the remains of the possible oldest dinosaur, Nyasasaurus parringtoni, and Asilisaurus, a silesaurid (the immediate sister-group to Dinosauria). However the oldest well-dated identified dinosaurs are from the late Carnian of the lower Ischigualasto Formation in northwestern Argentina, dated from 231.4 Ma to 225.9 Ma. Similarly, the Santa Maria and Caturrita formations in southern Brazil preserve basal dinosauromorphs, basal saurischians, and early sauropodomorphs. In North America, the oldest dated occurrences of vertebrate assemblages with dinosaurs are from the Chinle Formation. Two further early dinosaur-bearing formations, are the lower (and upper) Maleri Formation of India and the Pebbly Arkose Formation of Zimbabwe. These skeletal records of early dinosaurs document a time when they were not numerically abundant, and they were still of modest body size (Eoraptor had a slender body with an estimated weight of about 10 kilograms).

 

Mounted skeleton of Plateosaurus engelhardti (almost complete specimen AMNH FARB 6810 from Trossingen, Germany)

The CPE is one of the most severe biotic crises in the history of life. On land, palaeobotanical evidence shows a shift of floral associations of towards elements more adapted to humid conditions (the palynological record across the CPE suggest at least 3–4 discrete humid pulses). Several families and orders make their first appearance during the Carnian: bennettitaleans, modern ferns, and conifer families (Pinaceae, Araucariaceae, Cheirolepidaceae). The oldest biological inclusions found preserved in amber also come from the Carnian; and key herbivorous groups such as dicynodonts and rhynchosaurs, which had represented 50% or more of faunas, disappeared.

The DDE likely occurred in steps. Followed the extinction of rhynchosaurs in most, or all, parts of the world, there was a burst of dinosaurian diversity in the late Carnian, represented by the upper Ischigualasto Formation and coeval units, with mostly carnivorous small- to medium-sized dinosaurs. Then, the long span of the early Norian, from 228.5–218 Ma, during which dicynodonts and sauropodomorph dinosaurs were the major herbivores. Finally, with the disappearance of dicynodonts, sauropodomorph dinosaurs became truly large in the middle and late Norian, from 218 Ma. This was followed by the extinction of basal archosaur groups during the end-Triassic mass extinction, 201 Ma, and the diversification of sauropods, larger theropods, ornithopods, and armoured dinosaurs subsequently, in the Jurassic.

 

References:

Michael J. Benton et al. The Carnian Pluvial Episode and the origin of dinosaurs, Journal of the Geological Society (2018). DOI: 10.1144/jgs2018-049

Massimo Bernardi et al. Dinosaur diversification linked with the Carnian Pluvial Episode, Nature Communications (2018). DOI: 10.1038/s41467-018-03996-1

Jessica H. Whiteside, Sofie Lindström, Randall B. Irmis, Ian J. Glasspool, Morgan F. Schaller, Maria Dunlavey, Sterling J. Nesbitt, Nathan D. Smith, and Alan H. Turner. 2015. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. PNAS: doi:10.1073/pnas.1505252112

On the rise of the archosauromorphs

Proterosaurus speneri at Teyler’s Museum.

In the aftermath of the devastating Permo-Triassic mass extinction (~252 Ma), synapsid groups such as anomodonts and gorgonopsians and parareptiles such as pareiasaurs, were decimated and largely displaced by the archosauromorphs. The group, which include the ‘ruling reptiles’ (crocodylians, pterosaurs, dinosaurs, and their descendants, birds), originated during the middle–late Permian. The most basal archosauromorphs are Aenigmastropheus and Protorosaurus.

During the Triassic, the archosauromorphs achieved high morphological diversity, including aquatic or semi aquatic forms, highly specialized herbivores, massive predators, armoured crocodile-like forms, and gracile dinosaur precursors. The group constitutes an excellent empirical case to shed light on the recovery of terrestrial faunas after a mass extinction.

The Permian-Triassic boundary at Meishan, China (Photo: Shuzhong Shen)

The massive volcanic eruptions in Siberia at the end of the Permian, covered more than 2 millions of km 2 with lava flows, releasing more carbon in the atmosphere. High amounts of fluorine and chlorine increased the climatic instability, which means that the Mesozoic began under extreme hothouse conditions. Isotope studies and fossil record, indicates that temperatures in Pangaea interiors during the Early Triassic oscillated between 30 and 40 degrees Celsius, with heat peaks in the Induan and during the Early and Late Olenekian. It was suggested that during that time there was a moderate oxygen depletion that caused the low body size of the amphibian and reptilian life-forms found in those rocks.

After the mass extinction event, a distributed archosauromorph ‘disaster fauna’ dominated by proterosuchids, established for a short time. In South Africa, Proterosuchus occurs only between 5 and 14 m above the PT boundary and a similar pattern has been documented for the synapsid Lystrosaurus. During the Olenekian (1–5 million years after the extinction), archosauromorphs underwent a major phylogenetic diversification with the origins or initial diversification of major clades such as rhynchosaurs, archosaurs, erythrosuchids and tanystropheids.

Stenaulorhynchus stockleyi, a rhynchosaur from the Middle Triassic (From Wikimedia Commons)

The Mid Triassic is marked by the return of conifer-dominated forests, and the end of an interval of intense carbon perturbations, suggesting the recovery and stabilization of global ecosystems. The Anisian (5–10 Myr after the extinction) is characterized by a high diversity among the archosauromorphs with the appearance of large hypercarnivores, bizarre and highly specialized herbivores, long-necked marine predators, and gracile and agile dinosauromorphs. This phylogenetic diversity of archosauromorphs by the Middle Triassic paved the way for the ongoing diversification of the group (including the origins of dinosaurs, crocodylomorphs, and pterosaurs) in the Late Triassic, and their dominance of terrestrial ecosystems for the next 170 million years.

 

 

References:

Ezcurra MD, Butler RJ. 2018 The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass
extinction. Proc. R. Soc. B 285: 20180361. http://dx.doi.org/10.1098/rspb.2018.0361

Ezcurra MD. (2016) The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4:e1778 https://doi.org/10.7717/peerj.1778

Holz, M., Mesozoic paleogeography and paleoclimates – a discussion of the diverse greenhouse and hothouse conditions of an alien world, Journal of South American Earth Sciences (2015), doi: 10.1016/j.jsames.2015.01.001

Life finds a way.

 

Site M0077 in the Chicxulub crater as seen using gravity data. From Lowery et al., 2018.

In the late ’70, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that an asteroid collided with the Earth and caused one of the most devastating events in the history of life. In 1981, Pemex (a Mexican oil company) identified Chicxulub as the site of this massive asteroid impact. The crater is more than 180 km (110 miles) in diameter and 20 km (10 miles) in depth, making the feature one of the largest confirmed impact structures on Earth.

The impact released an estimated energy equivalent of 100 teratonnes of TNT, induced earthquakes, shelf collapse around the Yucatan platform, and widespread tsunamis that swept the coastal zones of the surrounding oceans. The event also produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere. The decrease of sunlight caused a drastic short-term global reduction in temperature (15 °C on a global average, 11 °C over the ocean, and 28 °C over land). While the surface and lower atmosphere cooled, the tropopause became much warmer, eliminate the tropical cold trap and allow water vapor mixing ratios to increase to well over 1,000 ppmv in the stratosphere. Those events accelerated the destruction of the ozone layer. During this period, UV light was able to reach the surface at highly elevated and harmful levels. Additionally, the vapour produced by the impact  could have led to global acid rain and a dramatic acidification of marine surface waters.

The Cretaceous/Palaeogene mass extinction eradicated almost three-quarters of the plant and animal species on Earth including non-avian dinosaurs, pterosaurs, marine reptiles, and ammonites. Global forest fires might have raged for months. Photosynthesis stopped and the food chain collapsed. Marine environments lost about half of their species, and almost 90% of Foraminifera species went extinct. But life always finds a way, and 30,000 years after the impact, a thriving ecosystem was present within the Chicxulub crater.

The evidence comes from the recent joint expedition of the International Ocean Discovery Program and International Continental Drilling Program. The team sampled the first record of the few hundred thousand years immediately after the impact within the Chicxulub crater. This sample includes foraminifera, calcareous nannoplankton, trace fossils and geochemical markers for high productivity. The lowermost part of the limestone sampled also contains the lowest occurrence of Parvularugoglobigerina eugubina, the first trochospiral planktic foraminifera, which marks the base of Zone Pα. This biozone was defined at Gubbio (Italy) to precisely characterise the Cretaceous/Paleogene boundary.

3 Early Danian foraminifer abundances and I/(Ca+Mg) oxygenation proxy. From Lowery et al., 2018.

P. eugubina was a low to middle latitude taxon with an open-ocean affinity and has an extremely variable morphology. Other foraminifer of the same genus (P. extensa, P. alabamensis) and Guembelitria cretacea were found at the same core. The nannofossil assemblage includes opportunistic groups that can tolerate high environmental stress such as Thoracosphaera and Braarudosphaera, but unlike the foraminifera, there are no clear stratigraphic trends in overall nannoplankton abundance. Discrete, but clear trace fossils, including Planolites and Chondrites, characterize the upper 20cm of the transitional unit. Nevertheless, the study also shows that photosynthetic phytoplankton struggled to recover for millions of years after the event.

Core samples also revealed that porous rocks in the center of the Chicxulub crater had remained hotter than 300 °C for more than 100,000 years. The high-temperature hydrothermal system was established within the crater but the appearance of burrowing organisms within years of the impact indicates that the hydrothermal system did not adversely affect seafloor life. These impact-generated hydrothermal systems are hypothesized to be potential habitats for early life on Earth and other planets.

 

Reference:

Christopher M. Lowery et al. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction, Nature (2018). DOI: 10.1038/s41586-018-0163-6

Charles G. Bardeen, Rolando R. Garcia, Owen B. Toon, and Andrew J. Conley, On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections, PNAS 2017 ; published ahead of print August 21, 2017 DOI: 10.1073/pnas.1708980114

Brugger J.G. Feulner, and S. Petri (2016), Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the CretaceousGeophys. Res. Lett.43,  doi:10.1002/2016GL072241.

 

 

Mary Anning, ‘the greatest fossilist the world ever knew’.

Duria Antiquior famous watercolor by the geologist Henry de la Beche based on fossils found by Mary Anning. From Wikimedia Commons.

By the 19th century, the study of the Earth became central to the economic and cultural life of Great Britain. Women were free to take part in collecting fossils and mineral specimens, and they were allowed to attend lectures but they were barred from membership in scientific societies. England was ruled by an elite, and of course, these scholarly activities only occurred within the upper echelon of British society. Notwithstanding, the most famous fossilist of the 19th century was a women of a low social station: Mary Anning.

Mary Anning was born on Lyme Regis on May 21, 1799. Her father was a carpenter and an amateur fossil collector who died when Mary was eleven. He trained Mary and her brother Joseph in how to look and clean fossils. After the death of her father, Mary and Joseph used those skills to search fossils that they sold as “curiosities”. The source of those fossils was the coastal cliffs around Lyme Regis, part of a geological formation known as the Blue Lias.

The shore of Lyme Bay where Mary Anning did most of her collecting.

Invertebrate fossils, like ammonoids or belemnites, were the most common findings. But when Mary was 12, her brother Joseph found a skull protruding from a cliff and few month later, Mary found the rest of the skeleton. They sold it for £23. Later, in 1819, the skeleton was purchased by Charles Koenig of the British Museum of London who suggested the name “Ichthyosaur” for the fossil.

In 1819 the Annings were in considerable financial difficulties. They were rescued by the generosity of Thomas James Birch (1768–1829), who arranged for the sale of his personal collection, largely purchased from the Annings, in Bullock’s Museum in London.  The auction took place in May 1820, during which George Cuvier bought several pieces for the Muséum National d’Histoire Naturelle.

Mary Anning’s sketch of belemnites. From original manuscripts held at the Natural History Museum, London. © The Natural History Museum, London

On December 10, 1823, she discovered the first complete Plesiosaur skeleton at Lyme Regis in Dorset. The fossil was acquired by the Duke of Buckingham. Noticed about the discovery, George Cuvier wrote to William Conybeare suggesting that the find was a fake produced by combining fossil bones from different animals. William Buckland and Conybeare sent a letter to Cuvier including anatomical details, an engraving of the specimen and a sketch made by Mary Morland (Buckland’s wife) based on Mary Anning’s own drawings and they convinced Cuvier that this specimen was a genuine find. From that moment, Cuvier treated Mary Anning as a legitimate and respectable fossil collector and cited her name in his publications.

Autograph letter about the discovery of plesiosaurus, by Mary Anning. From original manuscripts held at the Natural History Museum, London. © The Natural History Museum, London

By the age of 27, Mary was the owner of a little shop: Anning’s Fossil Depot. Many scientist and fossil collectors from around the globe went to Mary´s shop. She was friend of Henry De la Beche, the first director of the Geological Survey of Great Britain, who knew Mary since they were both children and lived in Lyme Regis. De la Beche was a great supporter of Mary’s work. She also corresponded with Charles Lyell, William Buckland and Mary Morland, Adam Sedgwick and Sir Roderick Murchison.
It’s fairly to say that Mary felt secure in the world of men, and a despite her religious beliefs, she was an early feminist. In an essay in her notebook, titled Woman!, Mary writes:  “And what is a woman? Was she not made of the same flesh and blood as lordly Man? Yes, and was destined doubtless, to become his friend, his helpmate on his pilgrimage but surely not his slave…”

A) Mary Anning (1799- 1847) B) William Buckland (1784- 1856)

On December of 1828, Mary found the first pterosaur skeleton outside Germany. William Buckland made the announcement of Mary’s discovery in the Geological Society of London and named Pterodactylus macronyx in allusion to its large claws. The skull of Anning’s specimen had not been discovered, but Buckland thought that the fragment of jaw in the collection of the Philpot sisters of Lyme belonged to a pterosaur.
In 1829,  Mary Anning discovered Squaloraja polyspondyle, a fish. Unfortunately, the specimen was lost in the destruction of the Bristol Museum by a German bombing raid in November, 1940.
From her correspondence is clear that Mary learned anatomy by dissecting modern organisms. In a letter to J.S. Miller of the Bristol Museum, dated 20 January 1830, she wrote: “…I have dissected a Ray since I received your letter, and I do not think it the same genus, the Vertebrae alone would constitute it a different genus being so unlike any fish vertebrae they are so closely anchylosed that they look like one bone but being dislocated at two places show that each thin line is a separate vertebrae with the ends flat…”. 

Sketch of Mary Anning by Henry De la Beche.

Mary Anning, ‘the greatest fossilist the world ever knew’, died of breast cancer on 9 March, 1847, at the age of 47. She was buried in the cemetery of St. Michaels. In the last decade of her life, Mary received  three accolades. The first was an annuity of £25, in return for her many contributions to the science of geology. The second was in 1846, when the geologists of the Geological Society of London organized a further subscription for her. The third accolade was her election, in July 1846, as the first Honorary Member of the new Dorset County Museum in Dorchester.

After her death, Henry de la Beche, Director of the Geological Survey and President of the Geological Society of London, wrote a very affectionate obituary published in the Quarterly Journal of the Geological Society on February 14, 1848, the only case of a non Fellow who received that honour.

Mary Anning’s Window, St. Michael’s Church. From Wikimedia Commons.

In February 1850 Mary was honoured by the unveiling of a new window in the parish church at Lyme, funded through another subscription among the Fellows of the Geological Society of London, with the following inscription: “This window is sacred to the memory of Mary Anning of this parish, who died 9 March AD 1847 and is erected by the vicar and some members of the Geological Society of London in commemoration of her usefulness in furthering the science of geology, as also of her benevolence of heart and integrity of life.”

In 1865, Charles Dickens wrote an article about Mary Anning’s life in his literary magazine “All the Year Round”, where emphasised the difficulties she had overcome: “Her history shows what humble people may do, if they have just purpose and courage enough, toward promoting the cause of science. The inscription under her memorial window commemorates “her usefulness in furthering the science of geology” (it was not a science when she began to discover, and so helped to make it one), “and also her benevolence of heart and integrity of life.” The carpenter’s daughter has won a name for herself, and has deserved to win it.”

References:

Buckland, Adelene: Novel Science : Fiction and the Invention of Nineteenth-Century Geology, University of Chicago Press, 2013.

BUREK, C. V. & HIGGS, B. (eds) The Role of Women in the History of Geology. Geological Society, London, Special Publications, 281, 1–8. DOI: 10.1144/SP281.1.

Davis, Larry E. (2012) “Mary Anning: Princess of Palaeontology and Geological Lioness,”The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 8.

Hugh Torrens, Mary Anning (1799-1847) of Lyme; ‘The Greatest Fossilist the World Ever Knew’, The British Journal for the History of Science Vol. 28, No. 3 (Sep., 1995), pp. 257-284. Published by: Cambridge University Press.

De la Beche, H., 1848a. Obituary notices. Quarterly Journal of the Geological Society of London, v. 4: xxiv–xxv.

Dickens, C., 1865. Mary Anning, the fossil finder. All the Year Round, 13 (Feb 11): 60–63.

 

 

Lessons from the past: Paleobotany and Climate Change

 

From 1984–2012, extensive greening has occurred in the tundra of Western Alaska, the northern coast of Canada, and the tundra of Quebec and Labrador. Credits: NASA’s Goddard Space Flight Center/Cindy Starr.

For the last 540 million years, Earth’s climate has oscillated between three basic states: Icehouse, Greenhouse (subdivided into Cool and Warm states), and Hothouse. The “Hothouse” condition is relatively short-lived and is consequence from the release of anomalously large inputs of CO2 into the atmosphere during the formation of Large Igneous Provinces (LIPs), when atmospheric CO2 concentrations may rise above 16 times (4,800 ppmv), while the “Icehouse” is characterized by polar ice, with alternating glacial–interglacial episodes in response to orbital forcing. The ‘Cool Greenhouse” displays  some polar ice and alpine glaciers,  with global average temperatures between 21° and 24°C. Finally, the ‘Warm Greenhouse’ lacks of any polar ice, and global average temperatures might have ranged from 24° to 30°C.

Reconstructions of Earth’s history have considerably improved our knowledge of episodes of rapid emissions of greenhouse gases and abrupt warming. Several episodes of global climate change were similar in magnitude to the anthropogenically forced climate change that has occurred during the past century. Consequently, the development of different proxy measures of paleoenvironmental parameters has received growing attention in recent years. Paleobotany, the study of fossil plants in deep geological time, offers key insights into vegetation responses to past global change, including suitable analogs for Earth’s climatic future.

Monthly average atmospheric carbon dioxide concentration at Mauna Loa Observatory, Hawaii.

The main forces of climatic change on a global scale are solar forcing, atmospheric composition, plate tectonics, Earth’s biota, and of course, us. Human activity is a major driver of the dynamics of Earth system. Until the Industrial Revolution, the average global CO2 levels fluctuated between about 170 ppm and 280 ppm. But with the beginning of the Industrial Era, that number risen above 300 ppm, currently averaging an increase of more than 2 ppm per year. The average monthly level of CO2 in the atmosphere on last April exceeded the 410 ppm for first time in history. Thus we could hit an average of 500 ppm within the next 45 years, a number that have been unprecedented for the past 50–100+ million years according to fossil plant-based CO2 estimates. Therefore, the closest analog for today conditions is the Eocene, meaning greater similarities in continental configuration, ecosystem structure and function, and global carbon cycling.

Some of the best-studied intervals of global change in the fossil plant record include the Triassic–Jurassic boundary, 201.36 ± 0.17 Mya; the PETM, 56 Mya; and the Eocene–Oligocene boundary, 33.9 Mya.The first two events represent rapid greenhouse gas–induced global warming episodes; the last coincides with the initiation of the Antarctic ice sheet and global cooling leading to our current icehouse.

Time line of plant evolution (From McElwain, 2018)

During the PETM, compositional shifts in terrestrial vegetation were marked but transient in temperate latitudes and long-lived in the tropics. The PETM is characterized by the release of 5 billion tons of CO2 into the atmosphere, while temperatures increased by 5 – 8°C. High temperatures and likely increased aridity in the North American temperate biomes resulted in geologically rapid compositional changes as local mixed deciduous and evergreen forest taxa (such as Taxodium) decreased in relative abundance. These suggest that global warming has a marked effect on the composition of terrestrial plant communities that is driven predominantly by migration rather than extinction. However, it’s difficult to draw parallels with Anthropocene warming and vegetation responses because they are occurring at a minimum of 20 times faster than any past warming episode in Earth’s history.

In the early Eocene (56 to 49 Mya), a time of peak sustained global warmth, the Arctic Ocean was ice free, with a mosaic of mixed deciduous, evergreen (Picea, Pinus), and swamp forests, and with high densities of the aquatic fern Azolla. The Azolla bloom reduced the carbon dioxide from the atmosphere to 650 ppm, reducing temperatures and setting the stage for our current icehouse Earth. The eventual demise of Azolla in the Arctic Ocean is attributed to reduced runoff and a slight salinity increase.

The modern fern Azolla filiculoides (From Wikipedia)

The Earth’s poles have warmed and will continue to warm at a faster rate than the average planetary warming, because the heat is readily transported poleward by oceans and the atmosphere due to positive feedback effects involving snow cover, albedo, vegetation, soot, and algal cover in the Arctic and Antarctic. This phenomenon is known as “polar amplification”.

Recent studies about the greening of the Arctic indicates that increasing shrubiness has likely already had an unexpected negative impact on herbivore populations, such as caribou, by decreasing browse quality. Thus, it is important to predict how short-term temporal trends in Arctic vegetation change will continue under CO2-induced global warming. The paleobotanical record of high Arctic floras may provide broad insight into these questions.

References:

Jennifer C. McElwain, Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change, Annual Review of Plant Biology  (2018), DOI: 10.1146/annurev-arplant-042817-040405