Haeckel and the legacy of early radiolarian taxonomists.

Ernst Haeckel and his assistant Nicholas Miklouho-Maclay, photographed in the Canary Islands in 1866. From Wikimedia Commons.

Ernst Haeckel and his assistant Nicholas Miklouho-Maclay, photographed in the Canary Islands in 1866. From Wikimedia Commons.

In the nineteenth century, the study of radiolarians was the domain of German scientists. These early German workers laid the foundation for all future work with this group of organisms, both living and fossil.

Christian Gottfried Ehrenberg (1795–1876) made a series of special monographs from 1838 to 1875 and named the group Polycystina. He described a half-dozen species of both Spumellaria and Nassellaria. Ehrenberg’s microscopic researches also included diatoms and  fossil cyst of dinoflagellates. His book “Mikrogeologie” (1854) has many illustrations of a great number of microfossils.

Many of Ehrenberg’s early radiolarian species descriptions come from Neogene biosiliceous sediments of Italy. Despite the fact he worked before the concept of type specimens for species had become established, Ehrenberg not only documented most of his species with published figures, but preserved the original material and microscope preparations for future generations of scientists to study (Lazarus 2014).

Christian Gottfried Ehrenberg and Johannes Müller. Source: Museum für Naturkunde, Berlin and Humboldt Universität, Berlin.

Christian Gottfried Ehrenberg and Johannes Müller. Source: Museum für Naturkunde,
Berlin and Humboldt Universität, Berlin.

Johannes Müller (1801–1858), one of the most famous German biologists of his generation, published three substantial papers on radiolarians. He described a total of 69 species, including both polycystines and acantharians. As a professor on Berlin’s Medical Faculty, he  influenced a great number of students. Among them were Ernst Haeckel (1834-1919) and Rudolf Virchow (1821-1902).

Like  Ehrenberg, Müller never believed that species had evolved over time, and he died before the publication of Charles Darwin’s Origin of Species.

After Müller’s death, E. Haeckel focused on the group last studied by his friend and professor: the radiolarians. With a copy of Müller’s paper and a wealth of material available off Messina, Haeckel began the first of his major studies of nature.

il_570xN.210850396

In 1862, Haeckel made the first complete  classificatory system for the Radiolaria and produced finely detailed drawings of them in his book: “Die Radiolarien”. He dedicated this monograph to Müller. In this work, he  included polycystines, phaeodarians and acantharians.

In 1864, Haeckel sent to Darwin, two folio volumes on radiolarians. The gothic beauty of these drawings impressed Darwin. He wrote to Haeckel that “were the most magnificent works which I have ever seen, and I am proud to possess a copy from the author”.

Haeckel became the most famous champion of Darwinism in Germany and he was so popular that, previous to the First World War, more people around the world learned about the evolutionary theory through his work “Natürliche Schöpfungsgeschichte” (The History of Creation: Or the Development of the Earth and its Inhabitants by the Action of Natural Causes) than from any other source. His study of radiolarians established Haeckel as a young scientist of importance. Later, Haeckel focused his research in the more general aspects of evolution and development.

Ernst Haeckel's ''Kunstformen der Natur'' (1904), showing Radiolarians of the order Stephoidea. From Wikimedia Commons.

Ernst Haeckel’s ”Kunstformen der Natur” (1904), showing Radiolarians of the order Stephoidea. From Wikimedia Commons.

Along with many other scientists, Haeckel was asked by the managers of the Challenger Expedition soon after the ship’s return to examine and report on the expedition’s collections specifically for radiolarians, sponges and jellyfish. Haeckel’s Report on Radiolaria took him almost a decade.

His final report was published in 1887 and summarized and subsumed all prior work on radiolarians up to that point, including, for example, many of Ehrenberg’s species and genera. But while Ehrenberg eschewed higher taxa, except for a minimally adequate number of obvious, high-level groupings, Haeckel did the opposite thing and introduced a much enlarged and substantially more complex higher-level taxonomy for the radiolaria generating numerous duplicate lower-level categories, including species, which led to an unusually large percentage of Haeckel’s named species being ignored as redundant or meaningless (Lazarus, 2014).

In 1904, Haeckel published his master work “Kunstformen der Natur” (Art Forms of Nature) and helped to popularize radiolarians among scientists and the general audience.

Radiolaria illustration from the Challenger Expedition 1873–76. From Wikimedia Commons.

Radiolaria illustration from the Challenger Expedition 1873–76. From Wikimedia Commons.

Karl Alfred Ritter von Zittel (1839-1904), was a prominent German paleontologist.  His early research was in minerals and petrography. In 1876, he published “Ueber einige fossile Radiolarien aus der norddeutschen Kreiden. Zeitschrift der deutschen geologischen Gesellschaft” where he described Mesozoic radiolarians in northern Germany. Many of the species names proposed by Zittel are still valid today.

David Rüst (1831–1916) published 10 papers on radiolarians. Although he was not the first to describe Mesozoic radiolarians, he was certainly the most prolific describing over 900 new species of fossil radiolarians from Mesozoic and even Palaeozoic rocks from Europe and North America.

 

References:

David Lazarus, The legacy of early radiolarian taxonomists, with a focus on the species published by early German workers, Journal of Micropalaeontology 2014, v.33; p3-19.

Robert J. Richards, The Tragic Sense of Life: Ernst Haeckel and the Struggle over Evolutionary Thought, (2008), University of Chicago Press.

The palynological record and the extinction events.

The main palynological provinces at the end of the Cretaceous (From Vajda and Bercovici, 2014)

The main palynological provinces at the end of the Cretaceous (From Vajda and Bercovici, 2014)

Pollen and other palynomorphs proved to be an extraordinary tool to palaeoenvironmental reconstruction. In 1921, Gunnar Erdtman, a Swedish botanist, was the first to suggest this application for fossil pollen study. Like spores, pollen grains reflects the ecology of their parent plants and their habitats and provide a continuous record of their evolutionary history. Pollen analysis involves the quantitative examination of spores and pollen at successive horizons through a core, specially in lake, marsh or delta sediments. The morphology of pollen grains is diverse. Gymnosperm pollen often is saccate (grains with two or three air sacs attached to the central body), while Angiosperm pollen shows more variation and covers a multitude of combinations of features: they could be  in groups of four (tetrads),  in pairs (dyads),  or single (monads). The individual grains can be inaperturate, or have one or more pores, or slit-like apertures or colpi (monocolpate, tricolpate).

Since the 1980s, many fossil pollen data sets were developed specifically to reconstruct past climate change.

Aquilapollenites quadricretaeus and Nothofagidites kaitangata

Aquilapollenites quadricretaeus and Nothofagidites kaitangata

 

The palynological record across the Cretaceous–Paleogene (K–Pg) boundary  is a unique global  marker that can be use as template to asses the causal mechanism behind other major extinction events in Earths history. Four major palynological provinces have been recognized based on distinctive angiosperm pollen and fern spores of restricted geographic and stratigraphic distribution. The Aquilapollenites Province had a northern circumpolar distribution that extended from Siberia, northern China, Japon and the western North America. The Normapolles Province occupied eastern North America,  Europe and western Asia. The Palmae Province occupied equatorial regions in the Late Cretacic and included SouthAmerica, Africa and India. Finally, the Notofagidites Province that extended across southern South America, Antartica, New Zeland and Australia.

During the Late Cretaceous the global climate change has been associated with episodes of outgassing from major volcanic events, orbital cyclicity and tectonism before ending with the cataclysm caused by a large bolide impact at Chicxulub, on the Yucatán Peninsula, Mexico. Although, during the middle Maastrichtian, there was a short-lived warming event related to an increase in atmospheric carbon dioxide from the first Deccan eruption phase, the global climate cooled during the latest Maastrichtian and across the K–Pg boundary (Wang et al., 2014; Brusatte et al., 2014). The variations in floral composition reflect these paleoclimatic changes.

Fern spike adapted from Bercovicci

Fern spike adapted from Bercovicci

Mainly angiosperms, disappear at the boundary, as evidenced the palynofloral records of North America and New Zealand. Patagonia shows a reduction in diversity and relative abundance in almost all plant groups from the latest Maastrichtian to the Danian, although only a few true extinctions occurred (Barreda et al, 2013).  The nature of vegetational change in the south polar region suggests that terrestrial ecosystems were already responding to relatively rapid climate change prior to the K–Pg catastrophe.

The earliest Paleocene vegetation shows an anomalous concentration of fern spores just above the level of palynological extinction. R. H. Tschudy, in 1984,  was the first to recognize this very distinctive pattern when he analyzed samples from the K/PG boundary and observed that just after the extinction event, the palynological assemblages were dominated by a high abundance of fern spores.

Schematic illustration comparing the three extinction events analized (From Vajda and Bercovici, 2014)

Schematic illustration comparing the three extinction events analized (From Vajda and Bercovici, 2014)

During the end-Permian Event, the woody gymnosperm vegetation (cordaitaleans and glossopterids) were replaced by spore-producing plants (mainly lycophytes) before the typical Mesozoic woody vegetation evolved. At the end-Triassic event,  the vegetation turnover in the Southern Hemisphere  consisted in the replacement to Alisporites (corystosperm)-dominated assemblage to a Classopollis (cheirolepidiacean)-dominated one.

Despite their difference, these three extinction events are consequences of dramatic environmental upheavals that generated comparable extinction patterns, and similar phases of vegetation recovery but at different temporal scales. First, all these events share a similar pattern of a short-term bloom of opportunistic “crisis” taxa proliferating in the devastated environment. Second, there’s a pulse in pioneer communities (spore spike). Third , a recovery in diversity including the evolution of new taxa. Furthermore, the longer the extreme environmental conditions last the greater is the extinction rate and the extinction patterns between autotrophs and heterotrophs, and between terrestrial and marine faunas become more similar (Vajda and Bercovici, 2014).

 

References:

Vivi Vajda & Antoine Bercovici (2014); The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: A template for other extinction events; Global and Planetary Change (advance online publication) Open Access DOI: 10.1016/j.gloplacha.2014.07.014, http://www.sciencedirect.com/science/article/pii/S0921818114001477

Vajda, V., Raine, J.I., 2003. Pollen and spores in marine Cretaceous/Tertiary boundary sediments at mid–Waipara River, North Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 46, 255–273

Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., Lin, Z., 2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Science Reviews 129, 136–147.

Vanessa C. Bowman, Jane E. Francis, Rosemary A. Askinb, James B. Riding, Graeme T. Swindles, Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence fromSeymour Island, Antarctic Peninsula, Palaeogeography, Palaeoclimatology, Palaeoecology, 408. 26-47. DOI 10.1016/j.palaeo.2014.04.018

Barreda VD, Cúneo NR, Wilf P, Currano ED, Scasso RA, et al. (2012) Cretaceous/Paleogene Floral Turnover in Patagonia: Drop in Diversity, Low Extinction, and a Classopollis Spike. PLoS ONE 7(12): e52455. doi: 10.1371/journal.pone.0052455

Brusatte, S. L., Butler, R. J., Barrett, P. M., Carrano, M. T., Evans, D. C., Lloyd, G. T., Mannion, P. D., Norell, M. A., Peppe, D. J., Upchurch, P., and Williamson, T. E. In press. The extinction of the dinosaurs.Biological Reviews

African paleoclimate and early hominin evolution.

Olduvai Gorge. From Wikimedia Commons

Olduvai Gorge. From Wikimedia Commons

Over the last ten million years the landscape of East Africa has been altered dramatically. It has changed from a relatively flat, homogenous region covered with tropical mixed forest, to a heterogeneous region, with mountains over 4 km high and vegetation ranging from desert to cloud forest. Long-term climate change seems to be modulated primarily  by tectonic changes. The progressive formation of the East African Rift Valley led to increased aridity and the development of numerous lake basins.

Five major transitions have influenced African climate during the early stage of human evolution: 1)  the emergence of  and expansion of C4 biomes (~8 Ma); 2) The Messinian Salinity Crisis (~ 5.3 Ma); 3)  the Intensification of Northern Hemisphere Glaciation during the Pliocene epoch between 3.6 and 2.7 million years ago;  4) the development of the Walker Circulation; 5) the Early-Middle Pleistocene Transition.

Map of East Africa with modern lake and paleolake basins (from Maslin et al., 2014)

Map of East Africa with modern lake and paleolake basins (from Maslin et al., 2014)

It has been hypothesized that both the uplift of the Tibetan Plateau about 8 Ma ago and the reduction of the Paratethys Sea intensified the seasonal Indian monsoon climate,  and that the more seasonal climate favored grasses over trees.

The isolation of the Mediterranean Sea from the Atlantic Ocean was caused by the tectonic closure of the Strait of Gibraltar. During the Messinian Salinity Crisis, the Mediterranean Sea went into a cycle of partly or nearly complete desiccation and removed nearly 6% of all dissolved salts in the oceans.

The Intensification of  Northern Hemisphere Glaciation (iNHG), the third regional climate event,  was characterised by periodic advances and retreats of ice sheets on a hemispherical scale and was the culmination of long-term high latitude cooling, which began with the Late Miocene.

Diatomites of the genera Stephanodiscus and Aulacoseira. (From Kingston et al., 2007)

Diatomites of the genera Stephanodiscus and Aulacoseira. (From Kingston et al., 2007)

The Early-Middle Pleistocene Transition, represents a major global climatic reorganization that profoundly affected ocean and atmospheric circulation, ice sheets and the distribution and evolution of biota.

The diatomite deposits from Pliocene lakes in the Baringo Basin suggest that the lakes appear rapidly, remain part of the landscape for thousands of years, then disappear in a highly variable and erratic way. Two dominant genera of diatoms present in East African lakes and Pliocene-Recent deposits helps to understand the dynamic of these humidity/aridity cycles: Aulacoseira predominates under cool windy conditions, while Stephanodiscus predominates under warmer, less windy conditions. The segregation of Aulacoseira and Stephanodiscus into subtle layers on a scale of < 100 mm and the presence of micro-laminae on a scale of one hundred to a few hundred microns suggest cyclic variation in a time frame of one to a few years (Kingston et al., 2007).

Early human evolutionary theories and climate change. From Maslin et al. 2014

Early human evolutionary theories and climate change. From Maslin et al. 2014

The major events in hominin evolution have occurred in East Africa. Several theories have been developed to explain the interaction between African paleoclimate and early hominid evolution. The savannah hypothesis suggested that hominins were forced to descend from the trees and adapted to life on the savannah facilitated by walking erect on two feet. This idea was already outlined by Lamarck in his Philosophie zoologique (1809], where he describes in details how an early ancestor of primeval human abandons an arboreal life to adapt itself to open plains.

More recent, the pulsed climate variability hypothesis  highlights the role of short periods of extreme climate variability specific to East Africa in driving hominin evolution and subsequent dispersal events (Maslin and Trauth, 2009). These periods of ‘pulsed climate variability’ are characterized by the appearance and disappearance of large, deep lakes in the East African Rift Valley. Paleoclimatic information derived from benthic foraminifera, regional aeolian dust flux data and the East African lake record indicates that hominin speciation events and changes in brain size seem to be statistically linked to the occurrence of ephemeral deep-water lakes (Shultz and Maslin, 2013).

References:

Maslin M.A., C. Brierley, A. Milner, S. Shultz, M. Trauth, K. Wilson “East African climate pulses and early human evolution” Quaternary Science Reviews (2014).

Maslin M.A., ‘Cascading uncertainty in Climate Change models and its implications for policy’ Geographical Journal 179, 264-271 (2013)

Ashley, G., Bunn, H., Delaney, J., Barboni, D., Domínguez-Rodrigo, M., Mabulla, A., Gurtov, A., Baluyot, R., Beverly, E., Baquedano, E., 2014. Paleoclimatic and paleoenvironmental framework of FLK North archaeological site, Olduvai Gorge, Tanzania. Quat. Int. 322e323, 54-65.

Shultz S, Maslin M (2013) Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses. PLoS ONE 8(10): e76750. DOI: 10.1371/journal.pone.0076750

John D. Kingston et al., Astronomically forced climate change in the Kenyan Rift Valley 2.7- 2.55 Ma: implications for the evolution of early hominin ecosystems, J Hum Evol (2007), doi:10.1016/j.jhevol.2006.12.007