Introducing Corythoraptor jacobsi.

The cranial casque of Corythoraptor jacobsi and recent cassowaries (From Lü et al., 2017)

Oviraptorosaurs are a well-defined group of coelurosaurian dinosaurs, characterized by short, deep skulls with toothless jaws, pneumatized caudal vertebrae, anteriorly concave pubic shafts, and posteriorly curved ischia.  The most basal forms were small, similar to a chicken or a turkey. They have only been found in Asia and North America and include animals like Protarcheoepteryx, Caudipteryx, Microvenator, Avimimus, Anzu, and Citipati. The most famous dinosaur of this group, Oviraptor, was discovered in 1923 by Roy Chapman Andrews in Mongolia, associated with a nest of what was thought to be Protoceratops eggs. The misconception persisted until 1990s when it was revealed that the eggs actually belonged to Oviraptor, not Protoceratops. Since then, more skeletons of Oviraptor and other oviraptorids like Citipati and Nemegtomaia have been found brooding over their eggs.

The Ganzhou area in the Jiangxi Province, in southern China, is one of the most productive oviraptorosaurian regions of the world. Six oviraptorosaurian dinosaurs have been named from Ganzhou: Banji long, Jiangxisaurus ganzhouensis, Nankangia jiangxiensis, Ganzhousaurus nankangensis, Huanansaurus ganzhouensis, and Tongtianlong limosus.  

The holotype of Corythoraptor jacobsi gen. et sp. nov. (From Lü et al., 2017)

The new oviraptorid dinosaur unearthed from the Upper Cretaceous deposits of Ganzhou, was named Corythoraptor jacobsi. The generic name Corythoraptor refers to a raptor bearing a “cassowary-like crest” on its head. The holotype (JPM-2015-001), an almost complete skeleton with the skull and lower jaw, probably corresponds to a young adult that was approaching a stationary stage of development. The anterodorsal part of the crest is missing, but apparently the highest point of the crest would project far above the orbit. The internal structure of the crest is similar to the casque of Casuarius unappendiculatus. The extensive cranial casque was probably composed of the skull roofing bones: nasals, frontals and parietals. The inner structure consists of randomly branching, sparse, trabeculae of variable thickness ranging from 0.3 to 1.2 mm, which implies that the inner core was light, fragile, and not suitable for percussive behavior including intraspecific combat.

Corythoraptor jacobsi forms one clade with Huanansaurus ganzhouensis, but both mainly differs in the skull morphology and the structure of the cervical vertebrae

 

References:

Lü, J., Li, G., Kundrát, M., Lee, Y., Sun, Z., Kobayashi, Y., Shen, C., Teng, F., Liu, H. 2017. High diversity of the Ganzhou oviraptorid fauna increased by a new “cassowary-like” crested species. Scientific Reports. doi: 10.1038/s41598-017-05016-6

 

Advertisements

Sapeornis and the flight modes of birds

Sapeornis chaoyangensis (DNHM-3078) showing well-preserved primary (P) and secondary (S) feathers. From Serrano and Chiappe, 2017

Birds originated from a theropod lineage more than 150 million years ago. By the Early Cretaceous, they diversified, evolving into a number of groups of varying anatomy and ecology. Most of these fossils, like Sapeornis chaoyangensis (125 to 120 Ma), are from the Jehol Biota of northeastern China. Sapeornis shows a combination of derived and primitive features, like a short, robust non-strut-like coracoid and a fibula reaching the distal end of the tarsal joint, a pygostyle, reduced manual digits, and a well-fused carpometacarpus. All of these features indicates a mosaic pattern in the early evolution of birds and confirm the basal position of Sapeornis near Archaeopteryx and Jeholornis in the phylogeny of early birds.

The evolution of flight involved a series of adaptive changes at the morphological and molecular levels, that included the fusion and elimination of some bones and the pneumatization of the remaining ones. Archaeopteryx lacked a bony sternum and a compensatory specialized gastral basket for anchoring large flight muscles, while Jelohornis had several derived flight-related features of modern birds like fused sacral vertebrae, an elongated coracoid with a procoracoid process, a complex sternum, a narrow furcula, and curved scapula. In Enantiornithines, their robust pygostyle appears to have been unable to support the muscles that control the flight feathers on the tail in modern birds.

Morphofunctional fitness of the wing shape for soaring as depicted by the relation between the lift surface and the wingspan in modern soaring birds and Sapeornis (From Serrano and Chiappe, 2017)

The flight modes of modern birds are a reflection of their different strategies to reduce the energetic costs of a highly demanding style of locomotion. Among these features are wing shape, and the use of thermals and tail winds. Flapping flight is energetically more costly  than gliding and soaring flight, consequently, large birds have either elongated wingspans that allow them to gain height through air currents and to glide for long distances with much lower transit costs than flapping.

Fossil evidence suggests that S. chaoyangensis was a specialized flier that used continental soaring as its main flight mode. Computational models of S. chaoyangensis are also congruent with other morphological similarities between S. chaoyangensis and modern soaring birds including the shape of the furcula and the proportions of the forelimbs. Modern soaring birds include dynamic soarers that exploit air velocity gradients over sea waves, and thermal soarers that use ascending air currents mainly generated in continental areas. Because, exceptionally well preserved fossils of S. chaoyangensis have revealed seeds and/or fruits in its intestinal tract, this interpretation of the flight capabilities of S. chaoyangensis is consistent with the energetic disadvantages from a herbivorous diet, because soaring is a less demanding flight mode than continuous flapping.

References:

Serrano FJ, Chiappe LM. 2017 Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. J. R. Soc. Interface 14: 20170182. http://dx.doi.org/10.1098/rsif.2017.0182

Butler PJ. 2016 The physiological basis of bird flight. Phil. Trans. R. Soc. B 371, 20150384 doi:10. 1098/rstb.2015.0384

Zhou, Zhonghe & Zhang, Fucheng (2003): Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Canadian Journal of Earth Sciences 40(5): 731–747. doi 10.1139/E03-011

Osteohistological analysis of Vegavis iaai

Vegavis iaai by Gabriel Lio. / Photo: CONICET

The earliest diversification of extant birds (Neornithes) occurred during the Cretaceous period. Today, with more than 10500 living species, birds are the most species-rich class of tetrapod vertebrates. Vegavis iaai is the first unquestionable neornithine bird from the Cretaceous and is known by the holotype and specimen MACN-PV 19.748. The holotype specimen MLP 93-I-3-1 (Museo de La Plata, Argentina) from Vega Island, western Antarctica, was discovered in 1992 by a team from the Argentine Antarctic Institute, but was only described as a new species in 2005 (Clarke et al., 2005). Polarornis gregrorii, from the López de Bertodano Formation of Seymour Island, Antarctica, and Vegavis form a monophyletic basal clade of foot-propelled anseriform birds (Agnolín 2016), a group that includes ducks, geese and swans.

Osteohistological analysis of the femur and humerus of V. iaai. shows a highly vascularized fibrolamellar matrix lacking lines of arrested growths, features widespread among modern birds. The femur has some secondary osteons, and shows several porosities, one especially large, posterior to the medullar cavity. The humerus exhibits a predominant fibrolamellar matrix, but in a portion of the anterior and medial sides of the shaft there are a few secondary osteons, some of them connected with Volkman’s canals, and near to these canals, there are a compact coarse cancellous bone (CCCB) with trabeculae. This tissue disposition and morphology suggests that Vegavis had remarkably high growth rates.

Detail of the humerus of Vegavis iaai (MACN-PV 19.748) in polarised light. Scale = 1 mm. (From G. Marsà et al., 2017)

Many studies on avian microanatomy have established a relationship between high bone compactness (i.e., considerable degree of osteosclerosis) and diving behavior. Differences in the degree of osteosclerosis could be tentatively related to variations in diving behaviour. Vegavis was a diver, characterised by a medium level of limb osteosclerosis. Polarornis, with more massive bones, was possibly adapted to deeper and more prolonged diving than Vegavis, as occurs in modern penguins.

The value of Relative Bone Thickness (RBT) in Vegavis is comparable with two genera of extant foot-propelled diving ducks. A high RBT is related with increased stiffening the forelimb, regardless of body mass or depth of diving. Flightless Pan-Alcidae and penguins, have a very rigid, flipper-like wings suggesting that decreased wing flexion and increased cortical thickness of forelimbs are somehow correlated. Based on  the values of RBT present in both Vegavis and Polarornis is possible to infer that these taxa were foot-propelled birds.

References:

Jordi Alexis Garcia Marsà, Federico L. Agnolín & Fernando Novas (2017): Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula, Historical Biology, DOI: 10.1080/08912963.2017.1348503

Agnolín FL. 2016. A brief history of South American birds. Contribuciones del MACN 6:157–172

Clarke, J. A., C. P. Tambussi, J. I. Noriega, G. M. Erickson, and R. A. Ketcham. 2005. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305-308. DOI: 10.1038/nature03150

The sixth mass extinction

Painting of the Dodo by Roelandt Savery executed in ca. 1626 and held at the NHMUK, London.

Mass extinctions had shaped the global diversity of our planet several times during the geological ages. The fossil record indicates that more than 95% of all species that ever lived are now extinct. During times of normal background extinction, the taxa that suffer extinction most frequently are characterized by small geographic ranges and low population abundance. Occasionally extinction events reach a global scale, with many species of all ecological types dying out in a near geological instant. In a conservative palaeontological sense, a mass extinction occurs when extinction rates accelerate relative to origination rates such that over 75% of species disappear within a geologically short interval (typically less than 2 million years).

Over the past 500 years, humans have triggered a wave of extinction, threat, and local population declines that may be comparable with the five previous mass extinctions of Earth’s history. Although anthropogenic climate change is playing a growing role, the primary drivers of modern extinctions seem to be habitat loss, human predation, and introduced species. The term defaunation was created to designate the declining of top predators and herbivores triggered by human activity, that results in a lack of agents that control the components of the ecosystems vegetation.

The percentage of species of land mammals from five major continents/
subcontinents in the period ∼1900–2015 (From Ceballos et al., 2017)

The most recent Living Planet Index (LPI) has estimated that wildlife abundance on the planet decreased by as much as 58% between 1970 and 2012. Several species of mammals that were relatively safe one or two decades ago are now endangered. The highest percentage of decreasing species is concentrated in tropical regions, mostly in the Neotropics and Southeast Asia. In 2016, there were only 7,000 cheetahs in existence, and less than 5,000 Borneo and Sumatran orangutans. Populations of African lion has dropped 43% since 1993, and populations of giraffes dropped from around 115,000 individuals in 1985 to around 97,000 representing what is now recognized to be four species (Giraffa giraffa, G. tippelskirchi, G. reticulata, and G. camelopardalis) in 2015.

Amphibians offer an important signal to the health of biodiversity; when they are stressed and struggling, biodiversity may be under pressure. Decreasing amphibians are prominent in Mexico, Central America, the northern Andes, Brazil, West Africa, Madagascar, India, Indonesia and Philippine. In the case of reptiles, the proportional decline concentrates almost exclusively in Madagascar; and decreasing species of birds are found over large regions of all continents. Other studies document that invertebrates and plants are suffering massive losses of populations and species. Long-term distribution data on moths and four other insect orders in the UK show that a substantial proportion of species have experienced severe range declines in the past several decades. Therefore, the acceleration of extinctions over the past decades, in which humans have played an increasingly important role, has left a number of hard questions about how the Anthropocene should be defined and whether or not extinctions should contribute to this definition.

 

References:

Gerardo CeballosPaul R. Ehrlichand Rodolfo Dirzo; Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines, Proceedings of the National Academy of Sciences (2017) doi: 10.1073/pnas.1704949114 

Rodolfo Dirzo et al., Defaunation in the Anthropocene, Science 345, 401 (2014); DOI: 10.1126/science.1251817

 

Molecular signatures of fossil leaves

Leaves of Ptilophyllum mueller, from Emmaville, New South Wales. Scale bars=10 mm (From McLoughlin et al., 2011)

The first plants colonized land approximately 450 million years ago. The transition from an exclusively aquatic to a terrestrial life style implied the evolution of a new set of morphological and physiological features. The most critical adaptive trait for survival during terrestrialization was the ability to retain water in increasingly dehydrating habitats. Consequently, the capacity to maintain a hydrophobic surface layer, or cuticle, over the surfaces of aerial organs was arguably one of the most important innovations in the history of plant evolution.

Spores, pollen and leaf cuticles, are among the most resilient organic structures in the geological record. These components may retain some phylogenetically unique signals, not only in well-preserved fossils, but also in remains with a high level of diagenetic maturity.

Ginkgo biloba, Eocene fossil leaf from the Tranquille Shale of MacAbee, British Columbia, Canada (From Wikipedia Commons)

Generally, the cuticle is divided into two major structural constituents: cutin and cutan. The fatty acid polyesters which constitute cutin, gives the cuticle considerable resistance to biodegradation. Cutan is a non-ester and non-hydrolyzable matrix of aliphatic compounds linked by ether bonds, which remain after cutin hydrolysis. Additionally, the surface of the cuticle may be covered by various long-chain hydrophobic waxes. All these components  favours the survival of the cuticle in many fossil plants, and can be used to resolve the stratigraphic ranges and relationships of extinct plants.

Data from infrared spectroscopy of modern plant cuticles, have been used successfully to support and clarify the species-level taxonomy of extant plants, for example, in Camellia and angiosperm pollen. Using infrared spectroscopy and statistical analysis, researchers at Lund University, the Swedish Museum of Natural History in Stockholm, and Vilnius University, analysed a selection of fossil Cycadales, Ginkgoales and conifers. The team obtained two major groups in the dendrogram of infrared spectra. One branch unites podocarpacean and araucariacean conifers (excluding the Jurassic Allocladus). A relationship consistent with all modern phylogenetic analyses of gymnosperm. The second branch unites a broad range of gymnosperms. Within this branch, Bennettitales (Otozamites and Pterophyllum) form a well-defined group in association with Ptilozamites and Nilssoniales. This cluster is linked to a group incorporating Cycadales on one sub-branch, and Leptostrobales, Ginkgoales and the putative araucariacean Jurassic conifer Allocladus on a second sub-branch.

 

Dendrogram based on HCA of infrared absorption spectra of an expanded group of 13 fossil gymnosperm taxa (From Vajda et al., 2017)

Early palaeobotanical studies generally linked Bennettitales to Cycadales, but more recent anatomical studies and cladistic analyses have indicated that Bennettitales are not closely related to Cycadales. By contrast, Bennettitales, Nilssoniales and Ptilozamites are grouped closely. Additionally,  the systematic position of Allocladus within Araucariaceae should be reassessed based on its close association with Ginkgo in the cluster analysis of infrared spectra.

References:

Vivi Vajda, Milda Pucetaite, Stephen McLoughlin, Anders Engdahl, Jimmy Heimdal, Per Uvdal. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nature Ecology & Evolution, 2017; DOI: 10.1038/s41559-017-0224-5

Stephen McLoughlinRaymond J. Carpenter, and Christian Pott, Ptilophyllum muelleri (Ettingsh.) comb. nov. from the Oligocene of Australia: Last of the Bennettitales?, International Journal of Plant Sciences 2011 172:4574-585, DOI: 10.1086/658920