
Skeletal reconstruction and exemplar skeletal remains of Lingwulong shenqi. Scale bars = 100 cm for a and 5 cm for b–o. From Xu et al., 2018
Sauropods were the largest terrestrial vertebrates. Their morphology is easy recognizable: a long, slender neck and a tail at the end of a large body supported by four columnar limbs. Sauropods dominated many Jurassic and Cretaceous terrestrial faunas. Although they were globally distributed, the absence of Diplodocoidea from East Asia has been interpreted as a biogeographic pattern caused by the Mesozoic fragmentation of Pangea. However, a newly discovered dinosaur from the Middle Jurassic of northern China suggests that Sauropods dispersed and diversified earlier than previously thought.
Lingwulong shenqi — literally the “amazing dragon from Lingwu” — is the first well-preserved confirmed diplodocoid from East Asia (23 synapomorphies support the placement of Lingwulong within Diplodocoidea with 10 of these being unequivocal). The holotype, (LM) V001a, is a partial skull comprising the braincase, skull roof, and occiput, and an associated set of dentary teeth. The paratype, (LGP) V001b, comprises a semi-articulated partial skeleton including a series of posterior dorsal vertebrae, complete sacrum, the first caudal vertebra, partial pelvis, and incomplete right hind limb.

An artist’s interpretation of what Lingwulong shenqi (Image: Zhang Zongda)
The Lingwulong specimens were found in the Yanan Formation at Ciyaopu, in northwest China. This formation has been divided in four or five members. Although, no radiometric constraints have been obtained for the Yanan Formation, its age has been estimated on the basis of biostratigraphy. The presence of a conchostracans assemblage (including Palaeoleptoestheria, Triglypta, and Euestheria) is indicative of a Middle Jurassic age.
The East Asian Isolation Hypothesis (EAIH) has become a well-established explanation of profound differences between Jurassic (and sometimes Early Cretaceous) Asian terrestrial faunas, that resulted in the evolution of endemic groups such as mamenchisaurid sauropods, and the early diverging lineage of tetanurans, oviraptorosaurs, therizinosaurs. In this model, the isolation ended in the Early Cretaceous when marine regressions allowed the invasion of groups from elsewhere in Pangaea, and the dispersal of Asian endemics (e.g., oviraptorosaurs, marginocephalians) into Europe and North America. However, it was claimed that diplodocoids never took part in these dispersals because the end-Jurassic extinction that greatly reduced their diversity and geographic range in the Early Cretaceous. The discovery of Lingwulong undermines the EAIH, forcing a significant revision of hypotheses concerning the origins and early radiation of Neosauropoda.
References:
Xing Xu, Paul Upchurch, Philip D. Mannion, Paul M. Barrett, Omar R. Regalado-Fernandez, Jinyou Mo, Jinfu Ma and Hongan Liu. 2018. A New Middle Jurassic Diplodocoid Suggests An Earlier Dispersal and Diversification of Sauropod Dinosaurs. Nature Communications.9, 2700. DOI: 10.1038/s41467-018-05128-1