Introducing Daspletosaurus horneri

D. horneri holotype skull (MOR 590, Museum of the Rockies, Bozeman, Montana, USA)

Tyrannosaurus rex, the most iconic dinosaur of all time, and its closest relatives known as tyrannosaurids, comprise the clade Tyrannosauroidea, a relatively derived group of theropod dinosaurs, more closely related to birds than to other large theropods such as allosauroids and spinosaurids. All tyrannosaurs were bipedal predators characterized by premaxillary teeth with a D-shaped cross section, fused nasals, extreme pneumaticity in the skull roof and lower jaws, a pronounced muscle attachment ridge on the ilium, and an elevated femoral head. The clade was a dominant component of the dinosaur faunas of the American West shortly after the emplacement of the Western Interior Seaway (about 99.5 Mya).

Daspletosaurus horneri, a new species of tyrannosaurid from the upper Two Medicine Formation of Montana, is the sister species of Daspletosaurus torosus. The new taxon was named in honor of Jack Horner, and inhabited northern Laramidia (what is now southern Alberta and northern Montana) about 75 million years ago. Paleontologist Vickie R. Clouse discovered the first specimen in 1989 and more individuals were uncovered in the following decades. The so-called Two Medicine tyrannosaurinemade its first appearance in a study co-written by Jack Horner in 1992, about the phyletic evolution in four lineages of dinosaurs, including tyrannosaurs, from the Late Cretaceous of the American West.

Phylogenetic relationships of tyrannosaurines calibrated to geological time (From Carr et al., 2017)

The holotype of Daspletosaurus horneri (MOR 590) consists of a complete skull, partial pectoral limb, and nearly complete hindlimb; and is estimated to be ~9.0 m in total length and 2.2 m tall.  D. horneri has taller skull than  D. torosus. Because of the excellent quality of preservation of these fossils it was possible to study the type of soft tissue that covered the face (premaxilla, maxilla, nasal, lacrimal, jugal, postorbital, squamosal, dentary). The study revealed that many of the tyrannosaur’s skull features are identical to those of crocodilians. Given the skeletal similarities with crocodylians, tyrannosaurids had a highly sensitive facial tactile system that functioned in prey capture, and object identification and manipulation, for detecting the optimal temperature of a nest site, and, in courtship, tyrannosaurids might have rubbed their sensitive faces together as a vital part of pre-copulatory play.

 

References:

Thomas D. Carr, David J. Varricchio, Jayc C. Sedlmayr, Eric M. Roberts, Jason R. Moore. A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Scientific Reports, 2017; 7: 44942
doi:10.1038/srep44942

Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61 (1992) doi:10.1038/358059a0

 

Advertisements

Re-examining the dinosaur evolutionary tree.

Close up of “Sue” at the Field Museum of Natural History in Chicago, IL (From Wikimedia Commons)

In the nineteen century, the famous Victorian anatomist Richard Owen diagnosed Dinosauria using three taxa: Megalosaurus, Iguanodon and Hylaeosaurus, on the basis of three main features: large size and terrestrial habits, upright posture and sacrum with five vertebrae (because the specimens were from all Late Jurassic and Cretaceous, he didn’t know that the first dinosaurs had three or fewer sacrals). Later, in 1887, Harry Govier Seeley summarised the works of Edward Drinker Cope, Thomas Huxley and Othniel Charles Marsh, and subdivide dinosaurs into Saurischians and the Ornithischians. He wrote: The characters on which these animals should be classified are, I submit, those which pervade the several parts of the skeleton, and exhibit some diversity among the associated animal types. The pelvis is perhaps more typical of these animals than any other part of the skeleton and should be a prime element in classification. The presence or absence of the pneumatic condition of the vertebrae is an important structural difference…” Based on these features, Seeley denied the monophyly of dinosaurs.

Seeley’s (1901) diagram of the relationships of Archosauria. From Padian 2013

At the mid 20th century, the consensual views about Dinosauria were: first, the group was not monophyletic; second almost no Triassic ornithischians were recognised, so they were considered derived morphologically, which leads to the third point, the problem of the ‘‘origin of dinosaurs’’ usually was reduced to the problem of the ‘‘origin of Saurischia,’’ because theropods were regarded as the most primitive saurischians. But the discovery of Lagosuchus and Lagerpeton from the Middle Triassic of Argentina induced a change in the views of dinosaurs origins. Also from South America came Herrerasaurus from the Ischigualasto Formation, the basal sauropodomorphs Saturnalia, Panphagia, Chromogisaurus, and the theropods Guibasaurus and Zupaysaurus, but no ornithischians except a possible heterodontosaurid jaw fragment from Patagonia. The 70s marked the beginning of a profound shift in thinking on nearly all aspects of dinosaur evolution, biology and ecology. Robert Bakker and Peter Galton, based on John Ostrom’s vision about Dinosauria, proposed, for perhaps the first time since 1842, that Dinosauria was indeed a monophyletic group and that it should be separated (along with birds) from other reptiles as a distinct ‘‘Class”. In 1986, the palaeontologist Jacques Gauthier showed that dinosaurs form a single group, which collectively has specific diagnostic traits that set them apart from all other animals.

The dinosaur evolutionary tree (From Padian, 2017.

Phylogenetic analyses of early dinosaurs have  supported the traditional scheme. But a new study authored by Matthew Baron, David Norman and Paul Barrett, reach different conclusions from those of previous studies by incorporating some different traits and reframing others. Baron and colleagues, analysed a wide range of dinosaurs and dinosauromorphs, including representatives of all known dinosauromorph clades. 74 taxa were scored for 457 characters. The team  arrived at a dinosaur evolutionary tree containing one main branch that subdivides into the groupings of Ornithischia and Theropoda, and a second main branch that contains the Sauropoda and Herrerasauridae (usually positioned as either basal theropods or basal Saurischia, or outside Dinosauria but close to it). The union between ornithischians and theropods is called Ornithoscelida. The term was coined in 1870 by Thomas Huxley for a group containing the historically recognized groupings of Compsognatha, Iguanodontidae, Megalosauridae and Scelidosauridae.

From Baron et al., 2017.

The synapomorphies that support the formation of the clade Ornithoscelida includes: an anterior premaxillary foramen located on the inside of the narial fossa; a sharp longitudinal ridge on the lateral surface of the maxilla; short and deep paroccipital processes; a post-temporal foramen enclosed within the paroccipital process; a straight femur, without a sigmoidal profile; absence of a medioventral acetabular flange; a straight femur, without a sigmoidal profile; and fusion of the distal tarsals to the proximal ends of the metatarsals.

Of course, those results have great implications for the very origin of dinosaurs. Ornithischia don’t begin to diversify substantially until the Early Jurassic. By contrast, the other dinosaurian groups already existed by at least the early Late Triassic. If the impoverished Triassic record of ornithischians reflects a true absence, ornithischians might have evolved from theropods in the Late Triassic (Padian, 2017). The study also suggest that dinosaurs might have originated in the Northern Hemisphere, because most of their basal members, as well as their close relatives, are found there. Furthermore, their analyses places the origin of dinosaurs at the boundary of the Olenekian and Anisian stages (around 247 Ma), slightly earlier than has been suggested previously.

 

References:

Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution.  Nature 543, 501–506  (2017).  doi:10.1038/nature21700

Padian K. Dividing the dinosaurs. Nature 543, 494–495 (2017) doi:10.1038/543494a

Padian K. The problem of dinosaur origins: integrating three approaches to the rise of Dinosauria. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Available on CJO 2013 doi:10.1017/S1755691013000431 (2013).

Seeley, H. G. On the classification of the fossil animals commonly named Dinosauria. Proc. R. Soc. Lond. 43, 165171 (1887).

Huxley, T. H. On the classification of the Dinosauria, with observations on the Dinosauria of the Trias. Quarterly Journal of the Geological Society, London 26, 32-51. (1870).

 

Mammalian dwarfing during ancient greenhouse warming events.

Bighorn Basin, Wyoming (Image: University of New Hampshire, College of Engineering and Physical Sciences)

The Paleocene-Eocene Thermal Maximum, known as PETM (approximately 55.8 million years ago), was a short-lived (~ 200,000 years) global warming event due to a rapid rise in the concentration of greenhouse gases in the atmosphere. It was suggested that this warming was initiated by the melting of methane hydrates on the seafloor and permafrost at high latitudes. This event was accompanied by other large-scale changes in the climate system, for example, the patterns of atmospheric circulation, vapor transport, precipitation, intermediate and deep-sea circulation, a rise in global sea level and ocean acidification.

The second largest hyperthermal of the early Eocene, known as ETM2, occurred about 2 million years after the PETM (approximately 53.7 Ma). Another smaller-amplitude hyperthermal, identified as “H2,” appears in the marine record about 100,000 years after ETM2 (approximately 53.6 Ma).

Sifrhippus sp. restoration in the Naturhistoriska Riksmuseet, Stockholm, Sweden (From Wikimedia Commons)

Dwarfing of mammalian taxa across the Palaeocene-Eocene Thermal Maximum (PETM) was first described in the Bighorn Basin, Wyoming. The basin has a remarkably fossil-rich sedimentary record of late Palaeocene to early Eocene age. The interval of the Paleocene–Eocene Thermal Maximum is represented by a unique mammalian fauna composed by smaller, but morphologically similar species to those found later in the Eocene. Diminutive species include the early equid Sifrhippus sandrae, the phenacodontids Ectocion parvus and Copecion davisi. 

Fossils of early equids are common in lower Eocene deposits of the Bighorn Basin, making a comparison between the PETM and ETM2 hyperthermal events possible. Using tooth size as a proxy for body size, researchers found a statistically significant decrease in the body size of mammals’ during the PETM and ETM2. Teeth in adult mammals scale proportionally to body size. For instance, Sifrhippus demonstrated a decrease of at least 30% in body size during the first 130,000 years of the PETM, followed by a 76% rebound in body size during the recovery phase of the PETM. Arenahippus, an early horse the size of a small dog, decreased by about 14 percent in size during the ETM2. (D’Ambrosia et al., 2017)

Arenahippus jaw fragment (Image credit: University of New Hampshire)

Body size change during periods of climate change is commonly seen throughout historical and geological records. Studies of modern animal populations have also yielded similar body size results. Tropical trees, anurans and mammals have all demonstrated decreased size or growth rate during drought years. In the case of mammals, the observed decrease in the average body size could have been an evolutionary response to create a more efficient way to reduce body heat.

The combination of global warming and the release of large amounts of carbon to the ocean-atmosphere system during the PETM has encouraged analogies with the modern anthropogenic climate change, which has already led to significant shifts in the distribution, phenology and behaviour of organisms. Plus, the consequences of shrinkage are not yet fully understood. This underlines the urgency for immediate action on global carbon emission reductions.

 

 

References:

Abigail R. D’Ambrosia, William C. Clyde, Henry C. Fricke, Philip D. Gingerich, Hemmo A. Abels. Repetitive mammalian dwarfing during ancient greenhouse warming events. Science Advances, 2017; 3 (3): e1601430 DOI: 10.1126/sciadv.1601430

Rankin, B., Fox, J., Barron-Ortiz, C., Chew, A., Holroyd, P., Ludtke, J., Yang, X., Theodor, J. 2015. The extended Price equation quantifies species selection on mammalian body size across the Palaeocene/Eocene Thermal Maximum. Proceedings of the Royal Society B. doi: 10.1098/rspb.2015.1097

Burger, B.J., Northward range extension of a diminutive-sized mammal (Ectocion parvus) and the implication of body size change during the Paleoc…, Palaeogeogr. Palaeoclimatol. Palaeoecol. (2012), http://dx.doi.org/10.1016/j.palaeo.2012.09.008

 

Mary Anning and the Hunt of Primeval Monsters.

mary_anning_plesiosaurus

Autograph letter concerning the discovery of plesiosaurus, from Mary Anning (From Wikimedia Commons)

Since the End of the 17th century to the beginning of the 19th, several discoveries of dinosaur remains and other large extinct ‘saurians’, were reported for first time. It was an exciting time full of discoveries and the concept of an ancient Earth became part of the public understanding. The most popular aspect of geology was  the collecting of fossils and minerals and the nineteenth-century geology, often perceived as the sport of gentlemen, was in fact, “reliant on all classes”.

The study of the Earth became central to the economic and cultural life of the Victorian Society and Literature influenced the pervasiveness of geological thinking. The Geological Society of London was founded on 13 October 1807 at the Freemasons’ Tavern, in the Covent Garden district of London, with the stated purpose of “…making geologists acquainted with each other, of stimulating their zeal, of inducing them to adopt one nomenclature, of facilitating the communications of new facts and of ascertaining what is known in their science and what remains to be discovered”. During this time, women were free to take part in collecting fossils and mineral specimens, and they were allowed to attend lectures but they were barred from membership in scientific societies. However, it was common for male scientists to have women assistants, often their own wives and daughters.

Plesiosaurus battling Temnodontosaurus (Oligostinus), front piece the Book of the Great Sea-Dragons by Thomas Hawkins.

Plesiosaurus battling Temnodontosaurus (Oligostinus), front piece the Book of the Great Sea-Dragons by Thomas Hawkins.

Mary Anning (1799-1847), was an special case. Despite her lower social condition, Mary became the most famous ‘fossilist’ of her time. She was born on Lyme Regis on May 21, 1799. Her father was a carpenter and an amateur fossil collector who died when Mary was eleven. He trained Mary and her brother Joseph in how to look and clean fossils. After the death of her father, Mary and Joseph used those skills to search fossils on the local cliffs,  that sold as “curiosities”. The source of the fossils was the coastal cliffs around Lyme Regis, one of the richest fossil locations in England and part of a geological formation known as the Blue Lias. The age of the formation corresponds to the Jurassic period. In 1811, she caught the public’s attention when she and her brother Joseph unearthed the skeleton of a ‘primeval monster’. They sold it for £23. Later, in 1819, the skeleton was purchased by Charles Koenig of the British Museum of London who suggested the name “Ichthyosaur” for the fossil.

On December 10, 1823, she discovered the first complete Plesiosaur skeleton at Lyme Regis in Dorset. The fossil was acquired by the Duke of Buckingham. Noticed about the discovery, George Cuvier wrote to William Conybeare suggesting that the find was a fake produced by combining fossil bones from different animals. William Buckland and Conybeare sent a letter to Cuvier including anatomical details, an engraving of the specimen and a sketch made by Mary Morland (Buckland’s wife) based on Mary Anning’s own drawings and they convinced Cuvier that this specimen was a genuine find. From that moment, Cuvier treated Mary Anning as a legitimate and respectable fossil collector and cited her name in his publications.

The holotype specimen of Dimorphodon macronyx found by Mary Anning in 1828 (From Wikimedia Commons)

On December of 1828, Mary found the first pterosaur skeleton outside Germany. William Buckland made the announcement of Mary’s discovery in the Geological Society of London and named Pterodactylus macronyx in allusion to its large claws. The skull of Anning’s specimen had not been discovered, but Buckland thought that the fragment of jaw in the collection of the Philpot sisters of Lyme belonged to a pterosaur.

In her later years, Mary Anning suffered some serious financial problems. She died of breast cancer on 9 March, 1847, at the age of 47. She was buried in the cemetery of St. Michaels. In the last decade of her life, Mary received  three accolades. The first was an annuity of £25, in return for her many contributions to the science of geology. The second was in 1846, when the geologists of the Geological Society of London organized a further subscription for her. The third accolade was her election, in July 1846, as the first Honorary Member of the new Dorset County Museum in Dorchester (Torrens, 1995). After her death, Henry de la Beche, Director of the Geological Survey and President of the Geological Society of London, wrote a very affectionate obituary published in the Quarterly Journal of the Geological Society on February 14, 1848, the only case of a non Fellow who received that honour.

References:

Davis, Larry E. (2012) “Mary Anning: Princess of Palaeontology and Geological Lioness,”The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 8.

Hugh Torrens, Mary Anning (1799-1847) of Lyme; ‘The Greatest Fossilist the World Ever Knew’, The British Journal for the History of Science Vol. 28, No. 3 (Sep., 1995), pp. 257-284. Published by: Cambridge University Press.

De la Beche, H., 1848a. Obituary notices. Quarterly Journal of the Geological Society of London, v. 4: xxiv–xxv.

Dickens, C., 1865. Mary Anning, the fossil finder. All the Year Round, 13 (Feb 11): 60–63.