Vegaviidae, a new clade of southern diving birds

Vegavis iaai by Gabriel Lio. / Photo: CONICET

The fossil record of Late Cretaceous–Paleogene modern birds in the Southern Hemisphere is fragmentary.  It includes Neogaeornis wetzeli from Maastrichtian beds of Chile, Polarornis gregorii and Vegavis iaai from the Maastrichtian of Antarctica, and Australornis lovei from the Paleogene of New Zealand. The phylogenetic relationships of these taxa have been variously interpreted by different authors. In a more recent analysis, Polarornis, Vegavis, Neogaeornis, and Australornis, are including in a new clade: Vegaviidae.

Vegaviids share a combination of characters related to diving adaptations, including compact and thickened cortex of hindlimb bones, femur with anteroposteriorly compressed and bowed shaft, deep and wide popliteal fossa delimited by a medial ridge, tibiotarsus showing notably proximally expanded cnemial crests, expanded fibular crest, anteroposterior compression of the tibial shaft, and a tarsometatarsus with a strong transverse compression of the shaft.

Histological sections of Vegavis iaai (MACN-PV 19.748) humerus (a), femur (b), polarized detail of humerus (c). Scale bar equals 10 mm for (a), (b) and 5 mm for (c). From Agnolín et al., 2017

The recognition of Polarornis, Vegavis, Neogaeornis, Australornis, and a wide array of isolated specimens as belonging to the new clade Vegaviidae reinforces the hypothesis that southern landmasses constituted a center for neornithine diversification, and emphasizes the role of Gondwana for the evolutionary history of Anseriformes and Neornithes.

The most informative source for anatomical comparison among Australornis, Polarornis, Vegavis as well as other southern avian is a recently published Vegavis skeleton (MACN-PV 19.748). Vegavis overlaps with Australornis in the proximal portion of the humerus, proximal part of the coracoid, scapula, and ulna; with Polarornis in the humerus, femur, and proximal end of the tibia; and with Neogaeornis in the tarsometatarsus.

Phylogeny with geographical distribution of Vegaviidae. From Agnolín et al., 2017.

The humerus is probably the most diagnostic element among anseriforms. In Vegavis and Australornis the humerus is notably narrow and medially tilted on its proximal half, and the deltopectoral crest extends for more than one third of the humeral length. The femur is well known both in Vegavis and Polarornis, and share a combination of characters absent in other Mesozoic or Paleogene birds, including strongly anteriorly bowed and anteroposteriorly compressed shaft (especially near its distal end)

Osteohistological analysis of the femur and humerus of V. iaai. shows a highly vascularized fibrolamellar matrix lacking lines of arrested growths, features widespread among modern birds. The femur has some secondary osteons, and shows several porosities, one especially large, posterior to the medullar cavity. The humerus exhibits a predominant fibrolamellar matrix, but in a portion of the anterior and medial sides of the shaft there are a few secondary osteons, some of them connected with Volkman’s canals, and near to these canals, there are a compact coarse cancellous bone (CCCB) with trabeculae. This tissue disposition and morphology suggests that Vegavis had remarkably high growth rates, a physiological adaptation that may be critical for surviving in seasonal climates at high latitudes, and  may also constitute the key adaptation that allowed vegaviids to survive the K/T mass extinction event.

 

References:

Agnolín, F.L., Egli, F.B., Chatterjee, S. et al. Sci Nat (2017) 104: 87. https://doi.org/10.1007/s00114-017-1508-y

Jordi Alexis Garcia Marsà, Federico L. Agnolín & Fernando Novas (2017): Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula, Historical Biology, DOI: 10.1080/08912963.2017.1348503

Advertisements

Junornis houi and the evolution of flight

Holotype of Junornis houi. (From Liu et. al; 2017)

Birds originated from a theropod lineage more than 150 million years ago. By the Early Cretaceous, they diversified, evolving into a number of groups of varying anatomy and ecology. The Enantiornithes are the most successful clade of Mesozoic birds. In the last decades, exceptionally well preserved avian fossils han been recovered from China. The most recent, Junornis houi, from the Yixian Formation of eastern Inner Mongolia, represents a new addition to the enantiornithine diversity of the Jehol Biota

The holotype (BMNHC-PH 919; Beijing Museum of Natural History), from the Early Cretaceous (~ 126±4 mya) of Yixian Formation,  is a nearly complete and articulated skeleton contained in two slabs, and surrounded by feather impressions defining the surface of its wings and body outline. The name Jun is derived from a Chinese character meaning beautiful; and ornis is Greek for bird. The species name, houi honors Dr. Hou Lianhai.

Photograph and interpretative drawing of the forelimb of Junornis houi (From Liu et. al; 2017)

Junornis exhibits the following combination of characters: rounded craniolateral corner of sternum; distinct trough excavating ventral surface of mediocranial portion of sternum; triangular process at base of sternal lateral trabecula; sternal lateral trabecula broad and laterally deflected; sternal intermediate trabecula nearly level with mid-shaft of lateral trabecula; sternal xiphoid process level with lateral trabeculae; costal processes of last two penultimate synsacral vertebrae three times wider than same process of last synsacral vertebra; and very broad pelvis. Non-pennaceous, contour feathers cover much of the skeleton except the wings and feet.

Based on the well-preserved skeleton and exquisite plumage of Junornis, it was possible  make some estimation of its flight capacity. The body and wings of this bird were similar to those of modern passeriforms such as Alauda arvensis and to other small-sized birds that fly using intermittent bounds. The low aspect ratio (AR = 5.5) wings of BMNHC-PH 919 suggest that it may have been adapted to rapid take-offs, given that modern birds with proportionally short, broad wings tend to maximize thrust during slow flight. The low wing loading (WL = 0.18 g/cm2) of this fossil indicates that this bird would have been able to generate a large magnitude of lift at low speeds because for a given speed and angle of attack, birds with greater wing area (and therefore lower WL) generate more lift than those with small wing areas. This value also suggest that this bird would have been highly maneuverable and able to perform tight turns.

References:

Liu D, Chiappe LM, Serrano F, Habib M, Zhang Y, Meng Q (2017) Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird. PLoS ONE12(10): e0184637. https://doi.org/10.1371/journal.pone.0184637

Forgotten women of Paleontology: Margaret Benson

Margaret Jane Benson. Portrait in the Archives of Royal Holloway, University of London (RHC PH/282/13) From Fraser & Cleal, 2007

It is a truth universally acknowledged, that women has always work harder than men to gain some recognition. It was true in the 16th, and it’s true now. In “A Room of One’s Own”, Virginia Woolf explores the conflicts that a gifted woman must have felt during the Renaissance through the fictional character of Judith Shakespeare, the sister of William Shakespeare, and cites as obstacles the indifference of most of the world, the profusion of distractions, and the heaping up of various forms of discouragement. But not only in the Elizabethan times. In the Victorian times there was the common assumption that the female brain was too fragile to cope with mathematics, or science in general. In a letter from March 1860, Thomas Henry Huxley wrote to great geologist Charles Lyell FRS: “Five-sixths of women will stop in the doll stage of evolution, to be the stronghold of parsonism, the drag on civilisation, the degradation of every important pursuit in which they mix themselves – intrigues in politics and friponnes in science.”

Margaret Crosfield on a Geologists’ Association fieldtrip to Leith Hill with Professor Lapworth (From Burek and Malpas, 2007).

Women have played  various and extensive roles in the history of geology. Unfortunately, their contribution has not been widely recognised by the public or academic researchers. In the 18th and 19th centuries women’s access to science was limited, and science was usually a ‘hobby’ for intelligent wealthy women. Early female scientists were often born into influential families, like Grace Milne, the eldest child of Louis Falconer and sister of the eminent botanist and palaeontologist, Hugh Falconer; or Mary Lyell, the daughter of the geologist Leonard Horner. They collected fossils and mineral specimens, and were allowed to attend scientific lectures, but they were barred from membership in scientific societies. But by the first half of the 20th century, a third of British palaeobotanists working on Carboniferous plants were women. The most notable were  Margaret Benson, Emily Dix, and Marie Stopes.

Newnham began as a house for five students in Regent Street in Cambridge in 1871

Margaret Benson was born on the 20th October 1859 in London. Between 1878 and 1879, she studied at Newnham College Cambridge. After obtaining her BSc at University College London (UCL) in 1891, she started research on plant embryology.  In 1893, Benson was appointed head of the new Department of Botany at Royal Holloway College, the first woman in the United Kingdom to hold such a senior position in the field of botany. Her palaeobotanical research centred on the anatomy of reproductive structures, especially of Carboniferous pteridosperms and lycophytes. In 1904, she was among the first group of women to be elected as Fellows of the Linnean Society, and in 1912 she was appointed Professor of Botany at the University of London. Her major study on lycophyte fructifications was on the cones of the Sigillaria plant. She also speculated on the relationship between the Palaeozoic arborescent lycophytes and the Recent Isoetes, with the Triassic Pleuromeia as a possible intermediate form. She worked with ferns and cordaites and described a new species, Cordaites felicis. Benson’s work is characterized by careful description. One of her most important theoretical works concerns the phylogenetic significance of the sporangiophore in lycophytes, sphenophytes and ferns. After her retirement in 1922, she was encouraged by D. H. Scott to write up some of her earlier unpublished work on the root anatomy of the early Carboniferous pteridosperm Heterangium. She even continued with fieldwork when she was in her 70s. There is an unpublished manuscript in which she described a new fertile Rhacopteris that she collected from Teilia Quarry in North Wales in 1933. She died on 20th June 1936 at Highgate, Middlesex.

References:

H. E. Fraser and C. J. Cleal, The contribution of British women to Carboniferous palaeobotany during the first half of the 20th century, Geological Society, London, Special Publications, 281, 51-82, 1 January 2007, https://doi.org/10.1144/SP281.4

C. V. Burek (2007). The role of women in geological higher education – Bedford College, London (Catherine Raisin) and Newnham College, Cambridge, UK, Geological Society, London, Special Publications, eds Burek C. V., Higgs B. 281, pp 9–38

 

A brief history of the Spinosaurus.

One of the photographs donate by W. Stromer. Image from the Washington University in St. Louis

Despite its low fossil record, Spinosaurus is one of the most famous dinosaur of all time. This gigantic theropod possessed highly derived cranial and vertebral features sufficiently distinct for it to be designated as the nominal genus of the clade Spinosauridae. In 1910, E. Stromer went to his third paleontological expedition to Egypt. He arrived to Alexandria on November 7. He was initially looking for early mammals and planned visit the area of Bahariya, in the Western Desert, which has sediments from the Cretaceous era. But an expedition to the Western Desert needed the permission by the English and French colonial authorities and of course the Egyptian authorities. Although diplomatic relations with Germany were rapidly deteriorating, Stromer managed to get the permissions. He arrived to the Bahariya Oasis on January 11, 1911. After facing some difficulties during the journey, on January 17 he began to explore the area of Gebel el Dist, and at the bottom of the Bahariya Depression, Stromer found  the remains of four immense and entirely new dinosaurs (Aegyptosaurus, Bahariasaurus, Carcharodontosaurus and Spinosaurus aegyptiacus), along with dozens of other unique specimens. Stromer and Markgraf recovered the right and left dentaries and splenials from the lower jaw; a straight piece of the left maxilla that was described but not drawn; 20 teeth; 2 cervical vertebrae; 7 dorsal (trunk) vertebrae; 3 sacral vertebrae; 1 caudal vertebra; 4 thoracic ribs; and gastralia. This gigantic predator is estimated to have been about 14 m, with unusually long spines on its back that probably formed a large, sail-like structure.

1) Photograph of the right mandibular ramus of the holotype of Spinosaurus aegyptiacus Stromer, 1915 (BSP 1912 VIII 19), in lateral view. 2) Reproduction of Stromer’s (1915, pl. I, fig. 12a) illustration of the right mandibular ramus.

Due to political tensions before and after World War I, many of this fossils were damaged after being inspected by colonial authorities and not arrived to Munich until 1922. The shipping from El Cairo was paid by the Swiss paleontologist Bernhard Peyer (1885-1963), a former student and friend of Stromer. During the World War II, E. Stromer tried to convince Karl Beurlen -a young nazi paleontologist who was in charge of the collection- that he had to move the fossils to a safer place, but Beurlen refused to do it. Unfortunately, on April 24, 1944, a British Royal Air Force raid bombed the museum and incinerated its collections. Only two photographs of the holotype of Spinosaurus aegyptiacus were recovered in in the archives of the Paläontologische Museum in June 2000, after they were donated to the museum by Ernst Stromer’s son, Wolfgang Stromer, in 1995. These photographs provide additional insight into the anatomy of the holotype specimen of Spinosaurus aegyptiacus.

“Illustrations of the vertebrate “sail” bones of Spinosaurus that appeared in one of Stromer’s monographs. From Wikimedia Commons.

In his original monograph, Stromer emphasized the peculiar character of the teeth of this unusual theropod. Because of their morphological convergence with those of crocodilians and other fish-eating reptiles, isolated spinosaurid teeth have frequently been misinterpreted. It appears that Baryonyx-like teeth were collected by Gideon Mantell in Sussex around 1820. Georges Cuvier was the first to publish an illustration of the four teeth from Tilgate Forest. These teeth, however, were generally considered as belonging to crocodilians, and when Richard Owen erected the taxon Suchosaurus cultridens to designate them he placed it among the crocodiles. Even when Owen realized that these teeth were peculiar in many respects and hinted at possible affinities with dinosaurs, he persistently classified Suchosaurus as a crocodilian, an interpretation that was accepted by most subsequent authors.

Although Stromer’s original description of Spinosaurus aegyptiacus was published in 1915, a more complete detailed picture of its anatomy, evolution, and biogeography only begun to emerge in recent decades.

 

References:

HONE, D. W. E. and HOLTZ, T. R. (2017), A Century of Spinosaurs – A Review and Revision of the Spinosauridae with Comments on Their Ecology. Acta Geologica Sinica, 91: 1120–1132. doi: 10.1111/1755-6724.13328

Smith, et al. “NEW INFORMATION REGARDING THE HOLOTYPE OF SPINOSAURUS AEGYPTIACUS STROMER, 1915.” J. Paleont., 80(2), 2006, pp. 400–406

A Brief Introduction to the Osteology of Viavenator exxoni

Viavenator exxoni, Museo Municipal Argentino Urquiza

The Abelisauridae is the best-known carnivorous dinosaur group from Gondwana. Their fossil remains have been recovered in Argentina, Brazil, Morocco, Niger, Libya, Madagascar, India, and France. These theropods exhibit spectacular cranial ornamentation in the form of horns and spikes and strongly reduced forelimbs and hands. The group was erected by Jose Bonaparte with the description of  Abelisaurus comahuensis, and includes: Carnotaurus sastrei, Aucasaurus garridoi, Ekrixinatosaurus novasi, Skorpiovenator bustingorryi, Eoabelisaurus and Viavenator exxoni

The holotype of Viavenator exxoni (MAU-Pv-LI-530) was found in the outcrops of the Bajo de la Carpa Formation (Santonian, Upper Cretaceous), northwestern Patagonia, Argentina. Viavenator series of autapomorphies are: transversely compressed parietal depressions on both sides of the supraoccipital crest; ventral edges of the paraoccipital processes located above the level of the dorsal edge of the occipital condyle; basioccipital-opisthotic complex about two and a half times the width and almost twice the height of the occipital condyle, in posterior view; well-developed crest below the occipital condyle; deeply excavated and sub-circular basisphenoidal recess; basipterygoid processes horizontally placed with respect to the cranial roof and located slightly dorsally to the basal tubera; mid and posterior cervical centra with slightly convex lateral and ventral surfaces; presence of an interspinous accessory articular system in middle and posterior dorsal vertebrae; presence of a pair of pneumatic foramina within the prespinal fossa in anterior caudal vertebrae; distal end of the scapular blade posteriorly curved.

Figure 1. Rendering of the type braincase of Viavenator exxoni (MAU-Pv-LI-530) in dorsal (A,B), and right lateral (C,D) view. Adapted from Carabajal y Filippi, 2017.

Viavenator presents highly-derived postcranial characters, and a relatively plesiomorphic skull in comparison with Carnotaurus and Aucasaurus. Cranial elements of this specimen include the complete neurocranium: frontals, parietals, sphenethmoids, orbitosphenoids, laterosphenoids, prootics, opisthotics, supraoccipital, exoccipitals, basioccipital, parasphenoids and basisphenoids. The plesiomorphic traits of the skull of Viavenator are mainly related with the anatomy of frontals, wich lack osseous prominences such as domes or horns. The dorsal surface of the frontals exhibits an ornamentation that consists of pits and sinuous furrows and ridges, although it is not well-preserved. The  exoccipitals form the lateral and possibly the laterodorsal margins of the foramen magnum, as apparently occurs in Carnotaurus. 

Vertebrae of Viavenator exxoni. Scale bar: 5 cm. From Filippi et al., 2017),

The postcranial skeleton of Viavenator is represented by eight cervical vertebrae (the atlas; seven dorsal vertebrate, four of them articulated; twelve caudal vertebrae); ribs; gastralias; one chevron; scapulocoracoid; ischium foot; and fibulae. The atlas is similar to that of Carnotaurus, though less robust and anteroposteriorly shorter; and there  are not observed prezygapophyseal facets in the neurapophyses, so it is inferred that the proatlas was absent, as also occurs in Carnotaurus and Majungasaurus. The shape of the epipophyses of the cervical region, which are
characterized by anterior and posterior projections, is shared by Viavenator and Carnotaurus, but it is not present in pre-Santonian forms such as Ilokelesia and Skorpiovenator. The derived vertebral characters of Viavenator are linked with an increase in the structural rigidity of the vertebral column, and with an increase in the cursorial abilities of these abelisaurids. This combination of plesiomorphic and derived traits suggests that Viavenator is a transitional form.

 

References:

Filippi, L.S., Méndez, A.H., Gianechini, F.A., Juárez Valieri, Rubé.D., Garrido, A.C., Osteology of Viavenator exxoni (Abelisauridae; Furileusauria) from the Bajo de la Carpa Formation, NW Patagonia, Argentina, Cretaceous Research (2017), doi: 10.1016/j.cretres.2017.07.019.

Leonardo S. Filippi, Ariel H. Méndez, Rubén D. Juárez Valieri and Alberto C. Garrido (2016). «A new brachyrostran with hypertrophied axial structures reveals an unexpected radiation of latest Cretaceous abelisaurids». Cretaceous Research 61: 209-219. doi:10.1016/j.cretres.2015.12.018

Paulina-Carabajal, A., Filippi, L., Neuroanatomy of the abelisaurid theropod Viavenator: The most complete reconstruction of a cranial endocast and inner ear for a South American representative of the clade, Cretaceous Research (2017), doi: 10.1016/j.cretres.2017.06.013

 

Geomythology: On Cyclops and Lestrigons

Pellegrino Tibaldi, The Blinding of Polyphemus, c. 1550-1

In Greek mythology giants are connected to the origin of the cosmos and represent the primordial chaos which contrasts with the rationality of the Gods. They were the sons of the earth (Gea) fertilized by the blood of the castrated Uranus (Heaven). In that chaotic, primal era, strange creatures proliferated, such as the Cyclopes, and the Centaurs. Lestrigons, a tribe of man-eating giants, appears in Homer’s Odyssey. Polyphemus, is one of the Cyclopes also described in Homer’s Odyssey. Greeks believed that the Laestrygonians, as well as the Cyclopes, had once inhabited Sicily.

But the ancient myth of giants is a common element in almost all cosmogonies. In Scandinavians legends, the blood of the giant Ymo formed the seas of th Earth, and his bones formed the mountains. In Peru, Brazil, and Mexico, the giants are part of the folk tradition. Judaism, more precisely, the Talmud and the Torah, converges with Genesis on the origin of the giants.

Laestrygonians Hurling Rocks at the Fleet of Odysseus

The discovery of huge fossil bones has always stimulated the imagination of local people, giving rise to legends. We found direct reference in the works of Herodotus which mentions the large bones of the giant Orestes recovered in Acadia, or even Virgil in his Georgics speaks of gigantic bones. In the sixteenth century, Italian historians, such as the Sicilian Tommaso Fazello, used the sacred texts to demonstrate that the first populations of many islands of the Mediterranean (among them Sicily and Sardinia), were of giants. At the same time, the first notices of South American fossils were reported by early Spanish explorers. These fossils were interpreted as the remains of an ancestral race of giant humans erased from the face of the Earth by a divine intervention. Fray Reginaldo de Lizarraga (1540-1609) also wrote about those “graves of giants” found in Córdoba, Argentina.

The case of Filippo Bonanni, an Italian Jesuit scholar, is very curious. He used the topic of the giants as an element in support of his theory of the inorganic origin of fossils. He properly rejects the myth of giants, but wrongly identify the nature of fossils. The most strong supporter for the organic origin of fossils was the italian painter Agostino Scilla. He published only one scientific treatise: La vana speculazione disingannata dal senso, lettera risponsiva Circa i Corpi Marini, che Petrificati si trouano in vari luoghi terrestri (The vain speculation disillusioned by the sense, response letter concerning the marine remains, which are found petrified in various terrestrial places). The aim of the work was the demonstration that fossils, which are found embedded in sediments on mountains and hills, represent the remains of lithified organisms, which at one time lived in the marine environment. The text was later translated to Latin and it was written as a response to a letter sent to him by Giovanni Francesco Buonamico, a doctor from Malta.

Femur of Mammuth interpreted as a bone of a giant and preserved as a relic in St. Stephen’s Cathedral in Vienna.

Madrisio (1718) is one of the first authors in Italy to suggest that much of this giant bones may be referred, without problem, to elephants from the past. But te real interpretative turning point takes place with the influential work of the Hans Sloane, who stressed the importance of a comparative study of the bones in various vertebrates. Applying this method, he demonstrated how the big bones and teeth found in sediments or in caves are nothing more than remains of cetaceans and large quadrupeds, remarking on the major anatomical differences between humans and other known vertebrates. Among the few precursors of Sloan, the Italian naturalist Giovanni Ciampini in 1688, using direct comparisons with the famous elephant exhibited in Florence in the Medicean Museum, was able to correctly interpret the bones found at Vitorchiano near Viterbo, initially attributed to gigantic men.

References:

Marco Romano & Marco Avanzini (2017): The skeletons of Cyclops and Lestrigons: misinterpretation of Quaternary vertebrates as remains of the mythological giants, Historical Biology, DOI: 10.1080/08912963.2017.1342640

Dark skies at the end of the Cretaceous

A time-lapse animation showing severe cooling due to sulfate aerosols from the Chicxulub asteroid impact 66 million years ago (Credit: PKI)

Thirty years ago, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that an asteroid collided with the Earth and caused one of the most devastating events in the history of life. The impact created the 180-kilometre wide Chicxulub crater causing widespread tsunamis along the coastal zones of the surrounding oceans and released an estimated energy equivalent of 100 teratons of TNT and produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere. Three-quarters of the plant and animal species on Earth disappeared. Marine ecosystems lost about half of their species while freshwater environments shows low extinction rates, about 10% to 22% of genera.

Recent studies suggest that the amount of sunlight that reached Earth’s surface was reduced by approximately 20%. Photosynthesis stopped and the food chain collapsed. The decrease of sunlight caused a drastic short-term global reduction in temperature (15 °C on a global average, 11 °C over the ocean, and 28 °C over land). While the surface and lower atmosphere cooled, the tropopause became much warmer, eliminate the tropical cold trap and allow water vapor mixing ratios to increase to well over 1,000 ppmv in the stratosphere. Those events accelerated the destruction of the ozone layer. During this period, UV light was able to reach the surface at highly elevated and harmful levels.

Gravity anomaly map of the Chicxulub impact structure (From Wikimedia Commons)

In 1980, Walter Alvarez and his father, Luis Alvarez ignited a huge controversy when they concluded that the anomalous iridium concentration at the K-Pg boundary is best interpreted as the result of an asteroid impact. They even calculated the size of the asteroid (about 7 km in diameter) and the crater that this body might have caused (about 100–200 km across). In 1981, Pemex (a Mexican oil company) identified Chicxulub as the site of a this massive asteroid impact. The crater is more than 180 km (110 miles) in diameter and 20 km (10 miles) in depth, making the feature one of the largest confirmed impact structures on Earth.

 

References:

Charles G. Bardeen, Rolando R. Garcia, Owen B. Toon, and Andrew J. Conley, On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections, PNAS 2017 ; published ahead of print August 21, 2017 DOI: 10.1073/pnas.1708980114

Brugger J.G. Feulner, and S. Petri (2016), Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the CretaceousGeophys. Res. Lett.43,  doi:10.1002/2016GL072241.

Patagotitan and the problem of body mass estimation

Image: A. Otero.

Since the discovery of dinosaur remains in the Neuquen basin in 1882, Argentina has gained the title of Land of the Giants. The tittle was reinforced by recent discoveries of more remains of giant titanosaurs like Argentinosaurus, Dreadnoughtus, Notocolossus, Puertasaurus.

Titanosaurus were a diverse group of sauropod dinosaurs represented by more than 30 genera, which included all descendants of the more recent common ancestor of Andesaurus and Saltasaurus. The group includes the smallest (e.g. Rinconsaurus, Saltasaurus; with estimated body masses of approximately 6 tonnes) and largest sauropods known to date. They had their major radiation during the middle Early Cretaceous. The evolution of body mass in this clade is key element to understand sauropod evolution.

Patagotitan reconstruction (Image: Diego Pol)

Patagotitan mayorum, originally discovered in 2010 by the rural farmer Aurelio Hernandez  is the largest and the most complete titanosaur taxa recovered to date. The generic name Patagotitan is derived from Patago (in reference to the geographic origin of the fossils, Patagonia), and titan (symbolic of its large size). The species name honours the Mayo family (owner of La Flecha Farm, the place where the fossils were found). The holotype (MPEF-PV 3400), includes an anterior and two middle cervical vertebrae, three anterior, two middle and two posterior dorsal vertebrae, six anterior caudal vertebrae, three chevrons, dorsal ribs, both sternal plates, right scapulocoracoid, both pubes and both femora. Six individuals were found in the same quarry, distributed in three distinct but closely spaced horizons, corresponding to  three different burial events. The first estimations of Patagotitan body mass suggest that it would weigh around 70 tons. The dorsal vertebrae preserved in Patagotitan, Argentinosaurus and Puertasaurus allows distinguishing the new taxon from previously known giant titanosaurs from the ‘mid-Cretaceous’ of Patagonia.

(a) Middle cervical vertebra in right lateral view; (b) anterior dorsal vertebra in anterior view (From Carballido et al., 2017)

During the last decades Argentinosaurus hiunculensis has been considered the largest dinosaur that ever walked the Earth. But because of the fragmentary nature of the type specimen, quantitative methods for body mass estimation cannot be directly applied. Two previous studies (Mazzetta et al., 2004; Benson et al., 2014) estimated the body mass of Argentinosaurus by applying scaling equations and measurements taken from two isolated femoral shafts found in deposits of the Huincul Formation. Calculations based in one of these fragmentary femora, housed at the Museo de La Plata collection and at the Museo Municipal “Carmen Funes”, estimates a body mass of 73 tons, but for the moment none of the femora can be confidentially referred to Argentinosaurus given the complete absence of femoral remains in the type material.

The team lead by Dr. José Luis Carballido from the Egidio Feruglio Paleontology Museum (Mef), used the anterior dorsal vertebrae (preserved in Argentinosaurus, Puertasaurus, Notocolossus) for a size comparison between Patagotitan and other giant titanosaurs from Patagonia. The direct comparison of these elements indicate that the dorsal vertebrae of Patagotitan are 8%–18% larger than that of Argentinosaurus and Puertasaurus, and even larger when compared to Notocolossus. Unfortunatelly, as the team remarks, this cannot be extrapolate to determine the body mass for Argentinosaurus and Puertasaurus and the only way to obtain a reliable body mass estimation is contingent on finding new associated material that can be referred to these taxa.

 

References:

Carballido JL, Pol D, Otero A, Cerda IA, Salgado L, Garrido AC, Ramezani J, Cúneo NR, Krause JM. 2017 A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc. R. Soc. B 284: 20171219.
DOI: 10.1098/rspb.2017.1219

Mazzetta, G. V., Christiansen, P., & Fariña, R. a. (2004). Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs. Historical Biology: A Journal of Paleobiology, 16(2–4), 71–83. http://dx.doi.org/10.1080/08912960410001715132

Benson, R. B. J., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P., & Evans, D. C. (2014). Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage. PLoS Biology, 12(5), http://doi.org/10.1371/journal.pbio.1001853.

 

Pisanosaurus revisited

Reconstructed skeleton of Pisanosaurus (Royal Ontario Museum)

Pisanosaurus mertii was originally described by Argentinian paleontologist Rodolfo Casamiquela in 1967, based on a poorly preserved but articulated skeleton from the upper levels of the Ischigualasto Formation (Late Triassic). The holotype and only known specimen (PVL 2577) is a fragmentary skeleton including partial upper and lower jaws, seven articulated dorsal vertebrae, four fragmentary vertebrae of uncertain position in the column, the impression of the central portion of the pelvis and sacrum, an articulated partial hind limb including the right tibia, fibula, proximal tarsals and pedal digits III and IV, the distal ends of the right and left femora, a left scapular blade (currently lost), a probable metacarpal III, and the impressions of some metacarpals (currently lost).

Pisanosaurus mertii holotype. Right lower mandible in medial (A) and lateral (B) views. Scale bar: 5 cm. From Agnolín and Rozadilla, 2017.

In the original description, Casamiquela considered that Pisanosaurus was a very distinct ornithischian, and even proposed a family: Pisanosauridae. The dentition and tooth-bearing bones of Pisanosaurus possess a large number of ornithischian traits, like its barricade-like dentition. But Pisanosaurus shows some features that strongly differ from those of ornithischians. For instance, vertebral centra are very elongated and transversely compressed, differing from the short and stout dorsal vertebrae of known ornithischians, including heterodontosaurids. The pelvis is another portion of the skeleton of Pisanosaurus strongly different from that of ornithischians.

Pisanosaurus mertii holotype. Dorsal vertebrae in left lateral (A) and right lateral (B) views. Scale bar: 5 cm. From Agnolín and Rozadilla, 2017.

On the other hand, Pisanosaurus shows some derived traits that resulted as unambiguous synapomorphies of the Silesauridae clade, and include: reduced to absent denticles on maxillary and dentary teeth; sacral ribs shared between two sacral vertebrae; lateral side of proximal tibia with a fibular flange (present also in heterodontosaurids and several saurischians); dorsoventrally flattened ungual phalanges; and ankylothecodonty, teeth partially fused to maxilla and dentary bone. The first and last characters are lacking in ornithischians. Of course, the inclusion of Pisanosaurus within Silesauridae implies that this taxon does not constitute the oldest ornithischian. This also suggests a significant gap between Pisanosaurus and the oldest unambiguous records of ornithischians: Laquintasaura and Lesothosaurus, which may be dated as Hettangian in age. This is consistent with previous interpretations proposing that ornithischian radiation occurred after the Triassic–Jurassic boundary.

References:

Federico L. Agnolín & Sebastián Rozadilla (2017): Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina, Journal of Systematic Palaeontology DOI: 10.1080/14772019.2017.1352623

Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution.  Nature 543, 501–506  (2017).  doi:10.1038/nature21700

Padian K. The problem of dinosaur origins: integrating three approaches to the rise of Dinosauria. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Available on CJO 2013 doi:10.1017/S1755691013000431 (2013).

Meet Borealopelta markmitchelli

Holotype of Borealopelta markmitchelli (From Brown et al., 2017)

The Ankylosauria is a group of herbivorous, quadrupedal, armoured dinosaurs subdivided in two major clades, the Ankylosauridae and the Nodosauridae. The most derived members of this clade are characterized by shortened skulls, pyramidal squamosal horns, and tail clubs, among other features. Nodosauridae have a kinked ischium and more massive osteoderms, but lack a tail club. Ankylosaurs were present primarily in Asia and North America,  but the early origins of this clade are ambiguous. A three-dimensionally preserved ankylosaurian discovered in the Suncor Millennium Mine in northeastern Alberta, Canada, offers new evidence for understanding the anatomy of this group.

The new specimen, Borealopelta markmitchelli, from the Early Cretaceous of Alberta, preserves integumentary structures as organic layers, including continuous fields of epidermal scales and intact horn sheaths capping the body armor. The generic name Borealopelta is derived from “borealis” (Latin, “northern”) and “pelta” (Greek, “shield”). The specific epithet markmitchelli honors Mark Mitchell for his preparation of the holotype.

Schematic drawing of TMP 2011.033.0001 in dorsal view (From Brown et al., 2017)

The holotype (TMP 2011.033.0001), with an estimated living mass of 1,300 kg, is an articulated specimen preserving the head, neck, most of the trunk and sacrum, a complete right and a partial left forelimb and manus, and partial pes. The skull is covered in dermal plates, which are overlain by their associated epidermal scales. Cervical and thoracic osteoderms form continuous transverse rows completely separated by transverse rows of polygonal basement scale. Osteoderms are covered by a thick, dark gray to black organic layer, representing the original, diagenetically altered, keratinous epidermal scales. The distribution of the film correlates well to the expected distribution of melanin, a pigment present in some vertebrate integumentary structures. The keratinized tissues in this nodosaur are heavily pigmented. The possible presence of eumelanin and pheomelanin, suggested it had reddish-brown camouflage. The evidence of countershading in a large, heavily armored herbivorous dinosaur also provides a unique insight into the predator-prey dynamic of the Cretaceous Period.

 

References:

Brown, C.M.; Henderson, D.M.; Vinther, J.; Fletcher, I.; Sistiaga, A.; Herrera, J.; Summons, R.E. “An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and Cretaceous Predator-Prey Dynamics”. Current Biology. doi:10.1016/j.cub.2017.06.071

Arbour, V. M.; Currie, P. J. (2015). “Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs”. Journal of Systematic Palaeontology: 1–60. doi: 10.1080/14772019.2015.1059985