The fossil history of the Christmas tree

Queen Victoria, Prince Albert, and their family around a Christmas tree. From the Illustrated London News (1848)

The Christmas tree is one of the most iconic tradition of modern culture. But long before the advent of Christiany, Egyptians, Celts and Vikings used evergreen plants and trees to celebrate the winter solstice. During Saturnalia, held between 17 and 25 December, Romans also decorated their homes and temples with evergreen boughs. In the 16th century, Germans started the Christmas tree tradition as we now know it. They carried the custom to Britain, though it wasn’t until 1846 that the fir tree became a worldwide custom, after Queen Victoria and her husband, Prince Albert, were sketched in the Illustrated London News standing with their children around a Christmas tree. 

Conifers are cone-bearing seed plants that originated in the Northern Hemisphere during the Middle Pennsylvanian, approximately 310 million years ago. During the LateTriassic and Early Jurassic, the group experienced a considerable diversification that resulted in the divergence of several modern families. Conifers range from small wiry shrubs to giant trees: Sequoiadendron giganteum reachs almost 100 m high, while Microcachrys tetragona from Tasmania has about few centimeters high. The group declined in diversity and abundance after the rise of angiosperms, and many taxa now have very restricted geographic distributions. Conifers also have the longest living non-clonal terrestrial organisms on Earth, with some examples of Pinus longaeva exceeding 4,600 years of age.

Pityostrobus pluriresinosa. From Smith et al., 2016.

Modern Christmas trees belong to a family called Pinaceae, the most species-rich clade of living conifers. The other conifer families include Cupressaceae, Araucariaceae, Podocarpaceae, Cephalotaxaceae, Taxaceae and most recently, the monotypic family Sciadopityacea. Numerous fossils, which include a number of anatomically preserved ovulate cones with many systematically informative characters, documeted the evolutionary history of Pinaceae.

Leaves and ovulate cones are widely variable and help to highlight the Cretaceous radiation of the family. Preserved fossil pinaceous ovulate cones include Pseudoaraucaria, Pityostrobus, Obirastrobus and Eathiestrobus. The estimated age for the initial crown split in Pinaceae between abietoids and pinoids is in the Early Jurassic, ~188 mya. Recent phylogenetic analyses suggest that the earliest- known member of the Pinaceae, Eathiestrobus mackenziei may be more closely related to Pinus than to other extant lineages; while various species of the widespread Cretaceous form genus Pityostrobus are stem members of both extant abietoids and pinoids.




Leslie, A. B., Beaulieu, J., Holman, G., Campbell, C. S., Mei, W., Raubeson, L. R., & Mathews, S. (2018). An overview of extant conifer evolution from the perspective of the fossil record. American Journal of Botany. doi:10.1002/ajb2.1143 
Smith, S. Y., Stockey, R. A., Rothwell, G. W., & Little, S. A. (2016). A new species of Pityostrobus (Pinaceae) from the Cretaceous of California: moving towards understanding the Cretaceous radiation of Pinaceae. Journal of Systematic Palaeontology, 15(1), 69–81. doi:10.1080/14772019.2016.1143885 

The end-Triassic extinction: A tale of Death and Global Warming.

A basaltic lava flow section from the Middle Atlas, Morocco. From Wikimedia Commons.

For the last 540 million years, five mass extinction events shaped the history of the Earth. The End-Triassic Extinction (ETE) is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP) emplaced during the initial rifting of Pangea. Most mammal-like reptiles and large amphibians disappeared, as well as early dinosaur groups. In the oceans, this event eliminated conodonts and nearly annihilated corals, ammonites, brachiopods and bivalves.

The emplacement of CAMP started c. 100,000 years before the end-Triassic event and continued in pulses for 700,000 years. Three negative organic C-isotope excursions (CIEs) have being recognized at the end-Triassic: the Marshi, the Spelae, and the top-Tilmanni CIEs. A recent study published in Nature estimated that a single short-lived magmatic pulse would have released about 5 × 1016 mol CO2, roughly the same total amount of projected anthropogenic emissions over the 21st century, causing an increase of about 2 °C in global temperatures, and an oceanic pH decrease of about 0.15 units over 0.1 kyrs, suggesting that the end-Triassic climatic and environmental changes, driven by CO2 emissions, may have been similar to those predicted for the near future.

A normal fern spore compared with mutated ones from the end-Triassic mass extinction event. Image credit: S LINDSTRÖM, GEUS

These massive volcanic eruptions with lava flows, also released large quantities of sulphur dioxide, thermogenic methane and large amounts of HF, HCl, halocarbons and toxic aromatics and heavy metals into the atmosphere, resulting in global warming, and ozone layer depletion. The high concentrations of pCO2 are indicative of ocean acidification suggesting that this may have been a marine extinction mechanism especially in relation to the scleractinian corals. Mutagenesis observed in plants and their reproductive cells (spores and pollen) were likely caused by mercury, the most genotoxic element on Earth .

The new study confirms the abundance of CO2 (up to 105 Gt volcanic CO2 degassed during CAMP emplacement) and indicates that at least part of this carbon has a middle- to lower-crust or mantle origin, suggesting that CAMP eruptions were rapid and potentially catastrophic for both climate and biosphere. Since the industrial revolution, the wave of animal and plant extinctions that began with the late Quaternary has accelerated. Australia has lost almost 40 percent of its forests, and almost 20% of the Amazon has disappeared in last five decades.Calculations suggest that the current rates of extinction are 100–1000 times above normal, or background levels. If we want to stop the degradation of our planet, we need to act now.



Capriolo, M., Marzoli, A., Aradi, L.E. et al. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nat Commun 11, 1670 (2020).

Sofie Lindström et al. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction, Science Advances (2019). DOI: 10.1126/sciadv.aaw4018}

Davies, J., Marzoli, A., Bertrand, H. et al. End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun 8, 15596 (2017).

A Short History of the Early Female Geoscientists from Argentina

Mathilde Dolgopol de Saez. Image credit: Asociación Paleontológica Argentina (A.P.A.)

Women have played various and extensive roles in the history of geology. Unfortunately, their contribution has not been widely recognised by the public or academic researchers. In the 18th and 19th centuries women’s access to science was limited, and science was usually a ‘hobby’ for intelligent wealthy women. Early female scientists were often born into influential families, like Grace Milne, the eldest child of Louis Falconer and sister of the eminent botanist and palaeontologist, Hugh Falconer; or Mary Lyell, the daughter of the geologist Leonard Horner. They collected fossils and mineral specimens, and were allowed to attend scientific lectures, but they were barred from membership in scientific societies. Thanks to the pioneer work of these women, the 20th century saw the slow but firm advance of women from the periphery of science towards the center of it.

Edelmira Inés Mórtola (1894-1973)

In Argentina, during the 1870s, public schools were organized and expanded for the training of teachers in different cities of the country. North American teachers were hired, some of whom promoted among their students the interest in pursuing university studies. Cecilia Grierson (1859-1934) was the first woman to earn a PhD in Medicine and Surgery in 1889. She was an important reference for other women, collaborating in the women’s movement in the early twentieth century.

The first papers in natural sciences signed by women were published around 1910. Edelmira Inés Mórtola was the first woman to earn her Ph. D in geology in Argentina, in 1921. She was also the first woman to work for the Dirección General de Minas, Geología, e Hidrología (DGMGH) in 1919. She focus on teaching and was an inspiring figure for young women. In 1924, she was appointed Professor at the Universidad de Buenos Aires (UBA). The Museum of Mineralogy “Dr. E. Mórtola “, that she helped to organize, honors her extraordinary career. She died on May 28, 1973.

Noemí Violeta Cattoi. Image credit: Asociación Paleontológica Argentina (A.P.A.)

Mathilde Dolgopol de Saez was born on March 6, 1901. She was one of the first female paleontologist from Argentina (graduated in 1927), along with Ana Cortelezzi (1928?), Dolores López Aranguren (1930), Andreína Bocchino de Ringuelet (1930?) y Enriqueta Vinacci Thul (1930). Unfortunately, only her thesis and the one of López Aranguren were formally published. The mayor part of her research was focused on fossil fish and birds. She died on June 27, 1957.

Noemí Violeta Cattoi was born in Buenos Aires on December 23, 1911. She received her PhD degree in Natural Science at the University of Buenos Aires, but before her graduation she was trained at the Museo Argentino de Ciencias Naturales. She was head of Paleozoology at the Museum, and adjunt professor at the Museo de la Plata. Her research was mainly focused on extinct birds and mammals from South America. She was also one of the founding member of the Asociación Paleontológica Argentina (A.P.A), along with María Bonetti de Stipanicic, Andreína B. de Ringuelet, Elsa F. de Alvarez and Hildebranda A. Castellaro. Noemí Cattoi died on January 29, 1965.


Rafael Herbst, Luisa M. Anzótegui, Las mujeres en la paleontología argentina, Revista del Museo de La Plata (2016) Volumen 1, Número Especial: 130-13 DOI:

GARCIA, Susana V.. Ni solas ni resignadas: la participación femenina en las actividades científico-académicas de la Argentina en los inicios del siglo XX. Cad. Pagu [online]. 2006, n.27, pp.133-172


Introducing Tralkasaurus cuyi, the thunder lizard.


The Abelisauridae represents the best-known carnivorous dinosaur group from Gondwana. Their fossil remains have been recovered in Argentina, Brazil, Morocco, Niger, Libya, Madagascar, India, and France. The group was erected by the legendary paleontologist Jose Bonaparte with the description of  Abelisaurus Comahuensis. These theropods exhibit spectacular cranial ornamentation in the form of horns and spikes and strongly reduced forelimbs and hands. The clade includes Carnotaurus sastrei, Abelisaurus comahuensis, Aucasaurus garridoi, Ekrixinatosaurus novasi, Skorpiovenator bustingorryi, Eoabelisaurus mefi and Viavenator exxoni.

Abelisauroids were traditionally divided into two main clades: large-sized Abelisauridae, and small-sized Noasauridae. Although represented by relatively well-known skeletons, the phylogenetic relationships within abelisaurids remain debated. The Argentinean record of abelisauroid theropods begins in the Middle Jurassic (Eoabelisaurus mefi) and spans most of the Late Cretaceous. Now, a new abelisaurid from the upper section of the Huincul Formation (Cenomanian-Turonian) at the Violante Farm fossil site, Río Negro province, northern Patagonia, Argentina, is an important addition to the knowledge of abelisaurid diversity.

Map of El Cuy region showing the Violante farm fossil site. From Cerroni et al., 2020.

The holotype MPCA-Pv 815 is represented by an incomplete specimen including a right maxilla, distorted and incomplete dorsal, sacral and caudal vertebrae, cervical ribs, and pubis. Tralkasaurus is a medium-sized abelisaurid, much smaller than large abelisaurids as Abelisaurus and Carnotaurus. The name derived from Tralka, thunder in Mapudungun language, and saurus, lizard in Ancient Greek. The specific name “cuyi” derived from the El Cuy, the geographical area at Rio Negro province, Argentina, where the fossil was found.

This four-meter-long (13-foot-long) theropod exhibits a unique combination of traits, including deeply incised and curved neurovascular grooves at the lateral maxillary body that originate at the ventral margin of the antorbital fossa, and shows an extensive antorbital fossa over the maxillary body that is ventrally delimited by a well-marked longitudinal ridge that runs from the promaxillary fenestra level towards the rear of the maxilla.
Because body mass is usually indicative of an ecological niche, the new taxon probably occupied a different ecological niche within the predatory guild.



Cerroni, M.A., Motta, M.J., Agnolín, F.L., Aranciaga Rolando, A.M., Brissón Egli, F., & Novas, F.E. (2019). A new abelisaurid from the Huincul Formation (Cenomanian-Turonian; Upper Cretaceous) of Río Negro province, Argentina. Journal of South American Earth Sciences

Introducing Wulong bohaiensis, the dancing dragon

Wulong bohaiensis. From Poust et al., 2020

Birds are the most species-rich class of tetrapod vertebrates. They originated from a theropod lineage more than 160 million years ago. The evolutionary history of Birds is at the root of the paravian radiation, when dromaeosaurids, troodontids, and avialans were diverging from one another. Within the clade Paraves we found the morphology and soft tissue changes associated with the origin of modern avian flight. One of this key changes was the difference of nearly four orders of magnitude in body size, a pivotal element in the origin of powered avian flight. In recent years, several discovered fossils of theropods and early birds have filled the morphological, functional, and temporal gaps along the line to modern birds. Most of these fossils are from the Jehol Biota of northeastern China, dated between approximately 130.7 and 120 million years ago.
The Jehol Biota included two formations: the Yixian Formation, and the Jiufotang Formation, and contain the most diversified avifauna known to date. Among them are the long bony-tailed Jeholornis, only slightly more derived than Archaeopteryx, and many fossils of troodontids like Mei long, Sinovenator changii, Sinusonasus magnodens and Jinfengopteryx elegans. Now, the recently described Wulong bohaiensis, from the Jiufotang Formation, shed new light on the evolution of Birds. This small, feathered dromaeosaurid theropod lived in the Early Cretaceous (Aptian) and was discovered by a farmer more than a decade ago. The holotype (D2933) is a complete articulated skeleton (only some ribs are missing)and exhibits special preservation of keratinous structures.

An X-ray of Wulong showing wrist and vertebra detail on the right. (Poust et al., 2020)

Wulong (meaning “dancing dragon”) is distinguished by the following autapomorphic features: long jugal process of quadratojugal, cranially inclined pneumatic foramina on the cranial half of dorsal centra, transverse processes of proximal caudals significantly longer than width of centrum, presence of 30 caudal vertebrae producing a proportionally long tail, distally located and large posterior process of the ischium, and large size of supracoracoid fenestra (>15% of total area). The holotype has several gross osteological markers of immaturity like the unfused dorsal and sacral vertebrae, but mature feathers are present across the entire body of Wulong.

The feathered dinosaurs from the Jehol Biota are key to understand the origin of birds and dinosaur behavior. In modern birds development of ornamental feathers is generally timed to co-occur with sexual maturity. The presence of such elaborate feathers in the immature Wulong demonstrates that nonavian dinosaurs had a very different strategy of plumage development then their living relatives.


Poust, AW; Gao, C; Varricchio, DJ; Wu, J; Zhang, F (2020). “A new microraptorine theropod from the Jehol Biota and growth in early dromaeosaurids”. The Anatomical Record. American Association for Anatomy. doi:10.1002/ar.24343

Marine ecosystems have entered the Anthropocene

Sampling of foraminifera found in a sediment core from the Caribbean, dating back to before the Industrial Revolution. CREDIT MICHAL KUCERA

Anthropogenic climate change and ocean acidification resulting from the emission of vast quantities of CO2 and other greenhouse gases pose a considerable threat to ecosystems and modern society. Planktonic foraminifera are a group of marine zooplankton that made their first appearance in the Late Triassic. Although, identifying the first occurrence of planktonic foraminifera is complex, with many suggested planktonic forms later being reinterpreted as benthic. They are present in different types of marine sediments, such as carbonates or limestones, and are excellent biostratigraphic markers. Their test are made of  globular chambers composed of secrete calcite or aragonite, with no internal structures and different patterns of chamber disposition: trochospiral, involute trochospiral and planispiral growth. During the Cenozoic, some forms exhibited supplementary apertures or areal apertures. The tests also show perforations and a variety of surface ornamentations like cones, short ridges or spines. The phylogenetic evolution of planktonic foraminifera are closely associated with global and regional changes in climate and oceanography.

John Murray, naturalist of the CHALLENGER Expedition (1872-1876) found that differences in species composition of planktonic foraminifera from ocean sediments contain clues about the temperatures in which they lived. The ratio of heavy and light Oxygen in foraminifera shells can reveal how cold the ocean was and how much ice existed at the time the shell formed. Another tool to reconstruct paleotemperatures is the ratio of magnesium to calcium (Mg/Ca) in foraminiferal shells. Mg2+ incorporation into foraminiferal calcite  is influenced by the temperature of the surrounding seawater, and the Mg/Ca ratios increase with increasing temperature.

Planktonic foraminifera from the Sargasso Sea in the North Atlantic Ocean. (Photograph courtesy Colomban de Vargas, EPPO/SBRoscoff.)

Analyzing previously collected sediment samples from over 3,500 sites around the world’s ocean, researchers found that the composition of the planktonic foraminifera has changed significantly since the pre-industrial period. The shifts in planktonic foraminifera are indicative of a more-general phenomenon across marine ecosystem, with zooplankton communities shifting poleward by an average 374 miles as a result of warming ocean temperatures.

Human activity is a major driver of the dynamics of Earth system. After the World War II, the impact of human activity on the global environment dramatically increased. Ocean warming reduces the solubility of oxygen, and raises metabolic rates accelerating the thermal stratification.


Jonkers, L., Hillebrand, H., & Kucera, M. (2019). Global change drives modern plankton communities away from the pre-industrial state. Nature. doi:10.1038/s41586-019-1230-3

Introducing Moros intrepidus, the harbinger of doom.

Moros intrepidus. Credit: Jorge Gonzalez

Tyrannosauroidea, the superfamily of carnivorous dinosaurs that includes the iconic Tyrannosaurus rex, originated in the Middle Jurassic, approximately 165 million years ago, and was a dominant component of the dinosaur faunas of the Northern Hemisphere. All tyrannosaurs were bipedal predators characterized by premaxillary teeth with a D-shaped cross section, fused nasals, extreme pneumaticity in the skull roof and lower jaws, a pronounced muscle attachment ridge on the ilium, and an elevated femoral head. But for most of their evolutionary history, tyrannosauroids were mostly small-bodied animals and only reached gigantic size during the final 20 million years of the Cretaceous. Now, the discovery of a new, diminutive tyrannosauroid, Moros intrepidus gen. et sp. nov., shed lights on the successful radiation of Campanian tyrannosauroids.

The holotype (NCSM 33392), preserves a partial right hind limb including portions of the femur, tibia, second and fourth metatarsals, and phalanges of the fourth pedal digit. It was recovered from the lower Mussentuchit Member (6–7 m above the Ruby Ranch contact), upper Cedar Mountain Formation, Emery County, Utah, USA. This small-bodied, gracile-limbed tyrannosauroid lived about 96 million years ago. The name derived from Greek word Moros (an embodiment of impending doom) in reference to the establishment of the Cretaceous tyrannosauroid lineage in NA, and the Latin word intrepidus (intrepid), in reference to the hypothesized intracontinental dispersal of tyrannosaurs during this interval.

Bone microstructure of M. intrepidus (NCSM 33392). From Zanno et al., 2019.

NCSM 33392 derives from a skeletally immature individual (6-7 years) nearing adult size . According to the histological analysis, M. intrepidus exhibits a moderate growth rate, similar to Guanlong, a more primitive tyrannosauroid from the Late Jurassic of China. By contrast, large-bodied, tyrannosaurines from the last stages of the Cretaceous, like Gorgosaurus, were already triple their masses at similar ages. M. intrepidus suggests that North American tyrannosauroids were restricted to small sizes for a protracted period of ~15 million years and at some point at the Turonian, they embarked on a trend of rapid body size increases, to became the top predators of the Cretaceous.



Zanno, L.E, Tucker, R.T., Canoville, A., Avrahami, H.M., Gates, T.A., Makovicky, P.J. (2019), Diminutive fleet-footed tyrannosauroid narrows the 70-million-year gap in the North American fossil record, Communications Biology, DOI: 10.1038/s42003-019-0308-7

On Pterosaurs and feathers.

Reconstruction of one of the studied anurognathid pterosaurs. Credit: Yuan Zhang/Nature Ecology & Evolution.

Feathers were once considered to be unique avialan structures. Recent studies indicated that non avian dinosaurs, as part of Archosauria, possessed the entirety of the known non keratin protein-coding toolkit for making feathers. Primitive theropods, such as Sinosauropteryx and the tyrannosaurs Dilong and Yutyrannus, and some plant-eating ornithischian dinosaurs, such as Tianyulong and Kulindadromeus, are known from their spectacularly preserved fossils covered in simple, hair-like filaments called ‘protofeathers’.

Other integumentary filaments, termed pycnofibres, has been reported in several pterosaur specimens, but there is still a substantial disagreement regarding their interpretation. J. Yang and colleagues described two specimens of short-tailed pterosaurs (NJU–57003 and CAGS–Z070) from the Middle-Late Jurassic Yanliao Biota, in northeast China (around 165-160 million years ago) with preserved structural fibres (actinofibrils) and four different types of pycnofibres. The specimens resemble Jeholopterus and Dendrorhynchoides, but they are relatively small.


Drawing of of (a) NJU–57003 and (b) CAGS–Z070 with skeletal element identification, outline of
preserved integument, and distribution of the four types of pycnofibres. From Yang et al., 2018.

Types 1 and 4 of pycnofibres occur in both specimens, but types 2 and 3 occur only in CAGS–Z070. This may reflect original biological differences or differences in the taphonomy of the two specimens. The pterosaur type 1 filaments resemble monofilaments in the ornithischian dinosaurs Tianyulong and Psittacosaurus and the coelurosaur Beipiaosaurus. The pterosaur type 2 filaments resemble the brush-like bundles of filaments in the coelurosaurs Epidexipteryx and Yi. Type 3 filaments resemble bristles in modern birds, but surprisingly do not correspond to any reported morphotype in non-avian dinosaurs. The pterosaur type 4 filaments are identical to the radially branched, downy feather-like morphotype found widely in coelurosaurs such as Caudipteryx and Dilong. Functions of these structures could include insulation, tactile sensing, streamlining and colouration (primarily for camouflage and signalling), as for bristles, down feathers and mammalian hairs.

Type 3 filaments (arrows) and similar structures (triangles). Scale bars: 10 mm in a, c and d; 1 mm in b. From Yang et al., 2018

Pterosaurs were winged cousins of the dinosaurs and lived from around 200 million years ago to 66 million years ago. In the early 1800’s, a fuzzy integument was first reported from the holotype of Scaphognathus crassirostris. A recent study on this specimen shows a subset of pycnofibers and actinofibrils. The discovery of integumentary structures in other pterosaurs, such as Pterorhynchus wellnhoferi (another rhamphorhynchoid pterosaur), and these exquisitely preserved pterosaurs from China, suggest that all Avemetatarsalia (the wide clade that includes dinosaurs, pterosaurs and close relatives) were ancestrally feathered.


Yang Z. et al., 2018. Pterosaur integumentary structure with complex feather-like branching. Nature Ecology and Evolution

Barrett PM, Evans DC, Campione NE. 2015 Evolution of dinosaur epidermal structures. Biol. Lett. 11: 20150229.

Kai R.K. Jäger, Helmut Tischlinger, Georg Oleschinski, and P. Martin Sander, Goldfuß was right: Soft part preservation in the Late Jurassic pterosaur Scaphognathus crassirostris revealed by reflectance transformation imaging (RTI) and UV light and the auspicious beginnings of paleo-art,

Craig B. Lowe, Julia A. Clarke, Allan J. Baker, David Haussler and Scott V. Edwards, Feather Development Genes and Associated Regulatory Innovation Predate the Origin of Dinosauria, Mol Biol Evol (2015) 32 (1): 23-28. doi: 10.1093/molbev/msu309

Soft-tissue evidence in a Jurassic ichthyosaur.

Plesiosaurus battling Temnodontosaurus (Oligostinus), front piece the Book of the Great Sea-Dragons by Thomas Hawkins.

In 1811, in Lyme Regis, one of the richest fossil locations in England and part of a geological formation known as the Blue Lias, Mary Anning and her brother Joseph unearthed the skull of an enigmatic ‘sea monster’. A year later, Mary uncovered the torso of the same specimen. The Annings sold the fossil to the Lord of the Manor of Colway, Mr. Henry Henley, for £23. The specimen was described by Sir Everard Home in 1814. Although no name was proposed for the fossil, Home concluded that it represented a transitional form between fish and crocodiles. Later, in 1819, the skeleton was purchased by Karl Dietrich Eberhard Koenig of the British Museum of London who suggested the name Ichthyosaur (“fish lizard”) in 1817.
Ichthyosaurs are extinct marine reptiles that first diversified near the end of the Early Triassic and remained one of the main predators in the Mesozoic ocean until their disappearance near the Cenomanian-Turonian boundary, 30 million years before the end-Cretaceous mass extinction. They had the largest eyes of all vertebrates, sometimes exceeding 25 cm in maximum diameter. They also have one of the earliest records of live-birth in amniotes.

Stenopterygius specimen from the Holzmaden quarry. Credit: Johan Lindgren

Stephen Jay Gould said that the ichthyosaur was his favourite example of convergent evolution: “Consider my candidate for the most astounding convergence of all: the ichthyosaur. This sea-going reptile with terrestrial ancestors converged so strongly on fishes that it actually evolved a dorsal fin and tail in just the right place and with just the right hydrological design. These structures are all the more remarkable because they evolved from nothing— the ancestral terrestrial reptile had no hump on its back or blade on its tail to serve as a precursor.”

During the Norian, the evolution of ichthyosaurs took a major turn, with the appearance of the clade Parvipelvia (ichthyosaurs with a small pelvic girdle). They were notably similar in appearance to extant pelagic cruisers such as odontocete whales. An exquisitely fossilized parvipelvian Stenopterygius from the Early Jurassic (Toarcian) of the Holzmaden quarry in southern Germany, indicates that their resemblance with dolphin and whales is more than skin deep.

Structure and chemistry of MH 432 blubber. From Lindgren et. al. 2018.

The specimen (MH 432; Urweltmuseum Hauff, Holzmaden, Germany) reveals endogenous cellular, sub-cellular and biomolecular constituents within relict skin and subcutaneous tissue. The external surface of the body is smooth, and was presumably comparable in life to the skin of extant cetaceans. The histological and microscopic examination of the fossil, evinced a multi-layered subsurface architecture. The approximately 100-μm-thick epidermis retains cell-like structures that are likely to represent preserved melanophores. The subcutaneous layer is over 500 μm thick, and comprises a glossy black material superimposed over a fibrous mat. The anatomical localization, chemical composition and fabric of the subcutaneous material is interpreted as fossilized blubber, a hallmark of warm-blooded marine amniotes.



Lindgren, J., Sjövall, P., Thiel, V., Zheng, W., Ito, S., Wakamatsu, K., … Schweitzer, M. H. (2018). Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature. doi:10.1038/s41586-018-0775-x

Motani, R. (2005). EVOLUTION OF FISH-SHAPED REPTILES (REPTILIA: ICHTHYOPTERYGIA) IN THEIR PHYSICAL ENVIRONMENTS AND CONSTRAINTS. Annual Review of Earth and Planetary Sciences, 33(1), 395–420. doi:10.1146/

Introducing Macrocollum itaquii.

M. itaquii, the oldest long-necked dino ever found, dating back 225 million years. (Credit: Müller et al 2018)

Sauropodomorphs were the largest land animals ever recorded in the history of life. Additionally to their colossal size, the sauropodomorph bauplan is also characterised by a small head, long neck, barrel-shaped body and columnar limbs. The group was successful and diverse, achieving a worldwide geographical distribution. Nevertheless, the rise of sauropodomorphs is still poorly understood due to the scarcity of well-preserved fossils in early Norian rocks. The Wachholz site (Caturrita Formation), in southern Brazil, is an important window to early Norian land ecosystems. This unit has yielded several sauropodomorphs, including Unaysaurus tolentinoi and the recently described Macrocollum itaquii, the oldest long-necked dinosaur known, that shed light on the rise of the group.

Discovered in 2012, from rocks belonging to the upper part of the Candelaria Sequence constrained as about 225 Ma, the three individuals described as M. itaquii are relatively well preserved. The holotype specimen (CAPPA/UFSM 0001a) consists of an almost complete and articulated skeleton. The two paratype specimens (CAPPA/UFSM 0001b and CAPPA/UFSM 0001c) are both articulated skeletons with one missing a skull and its cervical series. The clustered preservation of the three skeletons also represents the oldest evidence of gregarious behaviour in sauropodomorphs, a pattern seen in other Triassic associations, such as the ‘Plateosaurus bonebed’ from Central Europe, and the Mussaurus remains from the Laguna Colorada Formation, Argentina.


Skull of Macrocollum itaquii (From Müller et al 2018)

The generic name combines the Greek word macro (long) and the Latin word collum (neck), referring to the animal’s elongated neck. The specific epithet honours José Jerundino Machado Itaqui, one of the main actors behind the creation of CAPPA/UFSM (Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia/Universidade Federal de Santa Maria).

M. itaquii was only 3.5 meters long and weighed about 101.6 kilograms, and differs from all other known sauropodomorphs in possessing the following characters: antorbital fossa perforated by a promaxillary fenestra; medial margin of the supratemporal fossa with a simple smooth curve at the frontal/parietal suture; proximal articular surface of metacarpal I transversely narrow; acetabulum not fully open; ischiadic longitudinal groove not reaching the caudal half of the ischium; absence of trochanteric shelf on the femur; medial condyle of distal femoral articulation subrectangular in distal view; proximal end of metatarsal II with a straight medial margin.

An artist’s impression of M. itaquii.

In contrast to most Carnian members of the group, the teeth of M. itaquii and other Norian taxa are fully adapted to an omnivore/herbivore diet. The neck elongation may also have provided a competitive advantage for gathering food resources, allowing members of the group to reach higher vegetation. The modifications of the hindlimb of M. itaquii could be related to the progressive loss of cursorial habits.



Müller RT, Langer MC, Dias-da-Silva S. 2018, An exceptionally preserved association of complete dinosaur skeletons reveals the oldest long-necked sauropodomorphs. Biol. Lett. 14: 20180633.