A brief history of Proboscideans

Lyuba, the best preserved mammoth mummy in the world, at the Field Museum of Natural History (From Wikimedia Commons).

In 1811, German zoologist Johann Karl Wilhelm Illiger introduced the taxonomic order Proboscidea for elephants, the American mastodon and the woolly mammoth. The proboscis, an elongated appendage from the head of an animal, is the most distinguishing feature of these mammals. They also have a highly specialized dentition, and tusks that formed from elongated upper incisors. The lineage arose in the Late Paleocene in Africa and spread across Eurasia and the Americas. Over their 60 million years of evolutionary history, proboscideans went from a few kilograms in the earliest representatives, to forms weighed up to 6-8 metric tons. Phosphatherium escuilliei, one of the earliest recognized proboscidean, stood about 30 centimetres with a body mass of 17 kilograms while Palaeoloxodon recki stood 4.27 metres tall and weighed 12.3 tonnes. Today, the clade is represented by only 3 species: the African forest elephant, Loxodonta cyclotis, the African bush elephant, Loxodonta africana and the Asian elephant, Elephas maximus.

Skull and upper dentition of Eritherium azzouzorum, the oldest and most primitive elephant relative. From Gheerbrant 2009

Traditionally, three major radiations have been recognized. The first radiation occurred between Paleocene-Oligocene and was restricted to Afro-Arabia. The second radiation involved the expansion of taxa that emerged between the Late Oligocene and the early Miocene outside Africa. The third radiation emerged at the end of the Miocene and extended through the Holocene epoch. The most primitive and smallest known proboscidean belong to the family Plesielephantiformes. The most diverse family was the Gomphotheriidae, which lived on all continents except Antarctica and Australia. The earliest Elephantiformes were similar in appearance to the first gomphotheres. The iconic mammoths were widespread in the northern hemisphere during the Last Ice Age and their remains inspired all types of legends.

Gomphotherium angustidens at Senckenberg Museum of Frankfurt. From Wikipedia Commons

The onset of C4 grass-dominated habitats around 8 Ma brought dramatic changes to the evolutionary context of megafauna communities. The adaptation to particular feeding habits is manifested in changes to the upper and lower incisors of proboscideans. Proboscideans in the first radiation were mostly browsers, whereas those in the second and third radiations were mostly grazers. Miocene forms, such as Gomphotherium angustidens and Rhynchotherium tlascalae are known to have slightly more hypsodont molars than Paleocene–Oligocene proboscideans.

A mammoth tooth on the riverbank on Wrangel Island. Image credit; Juha Karhu/University of Helsinki

In Europe, during the Pliocene, took place the extinction of the Deinotheriidae (they survived in Africa until the early Pleistocene), Mammutidae, and Gomphotheriidae. The Pliocene also witnessed the rise of stegodonts (Stegodontidae) and modern elephants (Elephantinae). During the Pleistocene, continental glaciars expanded and contracted over most of northern hemisphere causing dramatic ecological shifts. Most of the terrestrial megafauna became extinct. The extinction was notably more selective for large-bodied animals than any other extinction interval in the last 65 million years (dwarfed mammoths survived until 4000 years ago on Wrangell Island). Today, the greatest threat to elephants is loss of habitat and poaching for the illegal ivory trade.

 

References:

Cantalapiedra, J.L., Sanisidro, Ó., Zhang, H. et al. The rise and fall of proboscidean ecological diversity. Nat Ecol Evol (2021). https://doi.org/10.1038/s41559-021-01498-w

Gheerbrant, E (2009). “Paleocene emergence of elephant relatives and the rapid radiation of African ungulates”. Proceedings of the National Academy of Sciences of the United States of America. 106 (26): 10717–10721. doi:10.1073/pnas.0900251106.

Shoshani, J. (1998). Understanding proboscidean evolution: a formidable task. Trends in Ecology & Evolution, 13(12), 480–487. doi:10.1016/s0169-5347(98)01491-8 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s