Forgotten women of Paleontology: Elizabeth Anderson Gray

Elizabeth Anderson Gray (1831 – 1924) Image: The Trustees of the Natural History Museum, London

The nineteen century was the “golden age” of Geology. The Industrial Revolution ushered a period of canal digging and major quarrying operations. These activities exposed sedimentary strata and fossils, and the study of the Earth became central to the economic and cultural life of  Great Britain. The most popular aspect of geology was  the collecting of fossils and minerals and the nineteenth-century geology, often perceived as the sport of gentlemen,was in fact, “reliant on all classes”. Women were free to take part in collecting fossils and mineral specimens, and they were allowed to attend lectures but they were barred from membership in scientific societies. It was common for male scientists to have women assistants, but most of them went unacknowledged and become lost to history.  However, some women found the way to avoid that fate. One of those women was Elizabeth Anderson Gray.

Born in Alloway, Ayrshire, on February 21, 1831, Elizabeth Anderson Gray  is considered as one of the foremost Scottish fossil collectors of the late 19th and early 20th centuries. She had little formal schooling but as a girl joined her father, Thomas Anderson, in his hobby of fossil collecting. In 1856, she married a Glasgow banker, Robert Gray, co-founder of The Natural History Society of Glasgow. She took a geology course for women at Glasgow University and she trained her children to document their findings too. She was also friend of Jane Longstaff, a British malacologist and expert in fossil gastropods of the Palaeozoic. The Gray collections, considered important in studies of Ordovician fauna, were sold to institutions. In 1920 a major part of the collection was acquired by the British Museum for £2250. Charles Lapworth, in his work on the ‘Girvan Succession’ referred extensively to E. Gray’s collection in his stratigraphical correlations.

In 1900, Elizabeth Gray was made an honorary member of the Geological Society of Glasgow for her many contributions, and in 1903, she was awarded the Murchison geological fund in recognition of her skilful services to geological science. She continued gathering fossils until her death on 1924.

 

References:

BUREK, C. V. & HIGGS, B. (eds) The Role of Women in the History of Geology. Geological Society, London, Special Publications, 281, 1–8. DOI: 10.1144/SP281.1.

M. R. S. Creese (2007), Fossil hunters, a cave explorer and a rock analyst: notes on some early women contributors to geology, Geological Society, London, Special Publications, 281, 39-49. https://doi.org/10.1144/SP281.3

 

Advertisements

Forgotten women of Paleontology: Margaret Benson

Margaret Jane Benson. Portrait in the Archives of Royal Holloway, University of London (RHC PH/282/13) From Fraser & Cleal, 2007

It is a truth universally acknowledged, that women has always work harder than men to gain some recognition. It was true in the 16th, and it’s true now. In “A Room of One’s Own”, Virginia Woolf explores the conflicts that a gifted woman must have felt during the Renaissance through the fictional character of Judith Shakespeare, the sister of William Shakespeare, and cites as obstacles the indifference of most of the world, the profusion of distractions, and the heaping up of various forms of discouragement. But not only in the Elizabethan times. In the Victorian times there was the common assumption that the female brain was too fragile to cope with mathematics, or science in general. In a letter from March 1860, Thomas Henry Huxley wrote to great geologist Charles Lyell FRS: “Five-sixths of women will stop in the doll stage of evolution, to be the stronghold of parsonism, the drag on civilisation, the degradation of every important pursuit in which they mix themselves – intrigues in politics and friponnes in science.”

Margaret Crosfield on a Geologists’ Association fieldtrip to Leith Hill with Professor Lapworth (From Burek and Malpas, 2007).

Women have played  various and extensive roles in the history of geology. Unfortunately, their contribution has not been widely recognised by the public or academic researchers. In the 18th and 19th centuries women’s access to science was limited, and science was usually a ‘hobby’ for intelligent wealthy women. Early female scientists were often born into influential families, like Grace Milne, the eldest child of Louis Falconer and sister of the eminent botanist and palaeontologist, Hugh Falconer; or Mary Lyell, the daughter of the geologist Leonard Horner. They collected fossils and mineral specimens, and were allowed to attend scientific lectures, but they were barred from membership in scientific societies. But by the first half of the 20th century, a third of British palaeobotanists working on Carboniferous plants were women. The most notable were  Margaret Benson, Emily Dix, and Marie Stopes.

Newnham began as a house for five students in Regent Street in Cambridge in 1871

Margaret Benson was born on the 20th October 1859 in London. Between 1878 and 1879, she studied at Newnham College Cambridge. After obtaining her BSc at University College London (UCL) in 1891, she started research on plant embryology.  In 1893, Benson was appointed head of the new Department of Botany at Royal Holloway College, the first woman in the United Kingdom to hold such a senior position in the field of botany. Her palaeobotanical research centred on the anatomy of reproductive structures, especially of Carboniferous pteridosperms and lycophytes. In 1904, she was among the first group of women to be elected as Fellows of the Linnean Society, and in 1912 she was appointed Professor of Botany at the University of London. Her major study on lycophyte fructifications was on the cones of the Sigillaria plant. She also speculated on the relationship between the Palaeozoic arborescent lycophytes and the Recent Isoetes, with the Triassic Pleuromeia as a possible intermediate form. She worked with ferns and cordaites and described a new species, Cordaites felicis. Benson’s work is characterized by careful description. One of her most important theoretical works concerns the phylogenetic significance of the sporangiophore in lycophytes, sphenophytes and ferns. After her retirement in 1922, she was encouraged by D. H. Scott to write up some of her earlier unpublished work on the root anatomy of the early Carboniferous pteridosperm Heterangium. She even continued with fieldwork when she was in her 70s. There is an unpublished manuscript in which she described a new fertile Rhacopteris that she collected from Teilia Quarry in North Wales in 1933. She died on 20th June 1936 at Highgate, Middlesex.

References:

H. E. Fraser and C. J. Cleal, The contribution of British women to Carboniferous palaeobotany during the first half of the 20th century, Geological Society, London, Special Publications, 281, 51-82, 1 January 2007, https://doi.org/10.1144/SP281.4

C. V. Burek (2007). The role of women in geological higher education – Bedford College, London (Catherine Raisin) and Newnham College, Cambridge, UK, Geological Society, London, Special Publications, eds Burek C. V., Higgs B. 281, pp 9–38

 

Remembering Mary Anning.

BECHE_Mary_Annings

Sketch of Mary Anning by Henry De la Beche. From Wikimedia Commons.

Mary Anning, ‘the greatest fossilist the world ever knew’, died of breast cancer on 9 March, 1847, at the age of 47. She was buried in the cemetery of St. Michaels. In the last decade of her life, Mary received  three accolades. The first was an annuity of £25, in return for her many contributions to the science of geology. The second was in 1846, when the geologists of the Geological Society of London organized a further subscription for her. The third accolade was her election, in July 1846, as the first Honorary Member of the new Dorset County Museum in Dorchester (Torrens, 1995). After her death, Henry de la Beche, Director of the Geological Survey and President of the Geological Society of London, wrote a very affectionate obituary published in the Quarterly Journal of the Geological Society on February 14, 1848, the only case of a non Fellow who received that honour. In his presidential address, de la Beche summarized Mary’s work: “I cannot close this notice of our losses by death without adverting to that of one, who though not placed among even the easier classes of society, but who had to earn her daily bread by her labour, yet contributed by her talents and untiring researches in no small degree to our knowledge of the great Enalio-saurians, and other forms of organic life entombed in the vicinity of Lyme Regis. MARY ANNING was the daughter of Richard Anning, a cabinet-maker of that town, and was born in May, 1799. … From her father, who appears to have been the first to collect and sell fossils in that neighbourhood, she learnt to search for and obtain them. Her future life was dedicated to this pursuit, by which she gained her livelihood; and there are those among us in this room who know well how to appreciate the skill she employed (from her knowledge of the various works as they appeared on the subject), in developing the remains of the many fine skeletons of Ichthyosauri and Plesiosauri, which without her care would never have presented to comparative anatomists in the uninjured form so desirable for their examinations…”

Mary Anning's Window, St. Michael's Church. From Wikimedia Commons.

Mary Anning’s Window, St. Michael’s Church. From Wikimedia Commons.

In February 1850 Mary was honoured by the unveiling of a new window in the parish church at Lyme, funded through another subscription among the Fellows of the Geological Society of London, with the following inscription: “This window is sacred to the memory of Mary Anning of this parish, who died 9 March AD 1847 and is erected by the vicar and some members of the Geological Society of London in commemoration of her usefulness in furthering the science of geology, as also of her benevolence of heart and integrity of life.”

In 1865, Charles Dickens wrote an article about Mary Anning’s life in his literary magazine “All the Year Round”, where emphasised the difficulties she had overcome: “Her history shows what humble people may do, if they have just purpose and courage enough, toward promoting the cause of science. The inscription under her memorial window commemorates “her usefulness in furthering the science of geology” (it was not a science when she began to discover, and so helped to make it one), “and also her benevolence of heart and integrity of life.” The carpenter’s daughter has won a name for herself, and has deserved to win it.”

References:

Davis, Larry E. (2012) “Mary Anning: Princess of Palaeontology and Geological Lioness,”The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 8.

Hugh Torrens, Mary Anning (1799-1847) of Lyme; ‘The Greatest Fossilist the World Ever Knew’, The British Journal for the History of Science Vol. 28, No. 3 (Sep., 1995), pp. 257-284. Published by: Cambridge University Press.

De la Beche, H., 1848a. Obituary notices. Quarterly Journal of the Geological Society of London, v. 4: xxiv–xxv.

Dickens, C., 1865. Mary Anning, the fossil finder. All the Year Round, 13 (Feb 11): 60–63.

Mignon Talbot and the forgotten women of Paleontology.

 

Sin título

Mignon Talbot  (From Turner et al, 2010)

 

The nineteenth century was the “golden age” of Geology, and women began to play an important role in the advance of this field of science. They collected fossils and mineral specimens, and were allowed to attend scientific lectures, but they were barred from membership in scientific societies. It was common for male scientists to have women assistants, often their own wives and daughters. A good example of that was Mary Lyell (1808–1873), daughter of the geologist Leonard Horner and the wife of eminent geologist Charles Lyell. But for most of men, the participation of women in geology and paleontology was perceived as a hobby.

Mary Anning (1799-1847), was a special case. She was the most famous woman paleontologist of her time, and found the first specimens of what would later be recognized as Ichthyosaurus, the first complete Plesiosaurus, the first pterosaur skeleton outside Germany and suggested that the “Bezoar stones” were fossilized feces. Scientists like William Buckland or Henry de la Beche owe their achievements to Mary’s work. William Buckland himself, persuaded the British Association for the Advancement of Science and the British government to award her an annuity of £25, in return for her many contributions to the science of geology.

Thanks to the pioneer work of these women,the twenty century saw the slow but firm advance of women from the periphery of science towards the center of it. Unfortunately, most of these early female scientists were forgotten and none of them reached the fame of their most illustrious predecessor, Miss Mary Anning.

Podokesaurus holyokensis holotype (From Wikimedia Commons)

Podokesaurus holyokensis holotype (From Wikimedia Commons)

Mignon Talbot was born in Iowa, on August 16, 1869. She studied geology at Ohio State University. In 1904 she received a Ph.D. from Yale and then joined at Mount Holyoke College, where she became Professor of Geology and Geography until her retirement in 1935. During her years at the faculty, she amassed a large collection of invertebrates fossil, but published few technical papers. In 1910, she became the first woman to find and describe a dinosaur: Podokesaurus holyokensis (swift-footed saurian). In 1911, she published a scientific description of the fossil. She wrote: “In a bowlder of Triassic sandstone which the glacier carried two or three miles, possibly, and deposited not far from the site of Mount Holyoke College, the writer recently found an excellently preserved skeleton of a small dinosaur the length of whose body is about 18 cm. The bowlder was split along the plane in which the fossil lies and part of the bones are in o half and part in the other. These bones are hollow and the whole  framework is very light and delicate“.  At the time, she was mentored in her investigation by Richard Swan Lull, who suggested that this dinosaur was insectivorous (although, Talbot identified it as a herbivore at a meeting of the Paleontological Society in December 1910). Unfortunately, in 1916, a fire destroyed the science hall and the only specimen of Podokesaurus holyokensis. She died on July 18, 1950.

Tilly Edinger (Photo,Museum of Comparative Zoology, Harvard University, Cambridge, MA)

Tilly Edinger (Photo,Museum of Comparative Zoology, Harvard University, Cambridge, MA)

Johanna Gabrielle Ottilie  “Tilly” Edinger was born on November 13, 1897 in Frankfurt, Germany. She was the youngest daughter of the eminent neurologist Ludwig Edinger and Dora Goldschmidt. She studied at Universities of Heidelberg, Frankfurt, and Munich. In 1921, she received her Ph. D at the University of Frankfurt. When she was preparing her doctoral dissertation about the palate of the Mesozoic marine reptile Nothosaurus, Edinger encountered a skull with a natural brain cast. Her early research was mostly descriptive and she was influenced by the work of Louis Dollo and Friedrich von Huene. In 1929,  she published Die fossilen Gehirne (Fossil Brains), the book that established Edinger’s membership in the German and international paleontological communities. She briefly worked at British Museum of Natural History after the events that followed the infamous “Kristallnacht” (Night of the Broken Glass). In 1940, with the support of Alfred S. Romer, she moved to Massachusetts to take a position at the Harvard Museum of Comparative Zoology. Shortly after, she was the first and only woman who attend the founding meeting of the Society of Vertebrate Paleontology (SVP). By the early 1950s, she was not only the major contributor to the field of paleoneurology but also the mentor to a younger generation that was following in her footsteps. She died on 27 May 1967 in Cambridge, Massachusetts.

References:

Susan Turner, Cynthia V. Burek and Richard T. J. Moody, Forgotten women in an extinct saurian (man’s) world, Geological Society, London, Special Publications 2010, v. 343, p. 111-153

Buchholtz, Emily A.; Seyfarth, Ernst-August (August 2001), “The Study of “Fossil Brains”: Tilly Edinger (1897–1967) and the Beginnings of Paleoneurology”, Bioscience 51 (8)

Kass-Simon, Gabrielle; Farnes, Patricia; Nash, Deborah, eds. (1999). Women of science : righting the record. Bloomington, Indiana: Indiana Univ. Press.

Talbot, M., 1911, Podokesaurus holyokensis, a new dinosaur of the Connecticut Valley: American Journal of Science, v. 31, p. 469-479

 

Mary Somerville, Queen of Science.

 

(From Wikimedia Commons)

Mary Somerville (1780- 1872) (From Wikimedia Commons)

Mary Somerville, née Mary Fairfax, was born on December 26, 1780,  in Jedburgh Scotland. She has been called  “Queen of Nineteenth Century Science.”  She was also the first English geographer. Her book “Physical Geography” (1848) was the first textbook on the subject in English and her most popular work. It was published three years after the first volume of Alexander von Humboldt’s “Cosmos”.

She had virtually no formal education but she had a very inquisitive mind. Her interest in mathematics was encouraged by her uncle, Dr. William Somerville, who later became her father in law.

In 1807, she was forced to married to Captain Samuel Greig and went to live to London. Her husband died three years later and Mary returned to Scotland and began to study astronomy and mathematics.  In 1811 she won a prize for her solution to a problem in the  journal “The Mathematical Repository.”

She married to her cousin William Somerville in 1812. He was an army doctor and unlike her first husband encouraged her to continuing writing and studying science.  The couple moved to London where they  became members of the scholarly and literary society of the time.

She was a friend of John Herschel, Charles Lyell, Alexander von Humboldt, William Buckland, Lord Henry Brougham,  and Roderick  and Charlotte Murchison. In her autobiography, Mary Somerville wrote about Charlotte: “Mrs Murchison was an amiable accomplished woman, drew prettily and what was rare at the time she had studied science, especially geology and it was chiefly owing to her example that her husband turned his mind to those pursuits in which he afterwards obtained such distinction.”

Sin título2

Self-portrait by Mary Somerville, Somerville College, University of Oxford

She presented a paper entitled “The Magnetic Properties of the Violet Rays of the Solar Spectrum” to the Royal Society in 1826.

In 1827, Lord Brougham asked her to translate La Place’s “Traité de Mécanique céleste” for the Society for the Diffusion of Useful Knowledge. She not only translated but she added explanations and illustrations to the text. The book was a success and became a text for young mathematicians at Trinity College.

In 1833, she and Caroline Herschel were elected honorary members of the Royal Astronomical Society, the first time women had won that recognition.  Her second book, “The Connection of the Physical Sciences” was published in 1834.

At the age of sixty eight she published “Physical Geography”. The book was dedicated to her mentor John Herschel. In the first page of “Physical Geography” she explains her aim in her scientific writings by quoting Francis Bacon: “No natural phenomenon can be adequately studied in itself alone, but to be understood must be considered as it stands connected with all of nature”.

In “Physical Geography”, she included geology and the distribution of animal and vegetable life. She also sought to understand the various transformation processes involved.

She signed a petition presented to the University of London in 1862 praying that women might be allowed to sit for degree examinations, but the petition was rejected.

In 1869 she was awarded with the first gold medal of the Royal Geographical Society and published her last scientific book: Molecular and Microscopic Science. She died three years later, on November 28 in Naples, Italy.

Mary Somerville was an outstanding scientist and her scientific writings contributed to popularize science, one of the most important cultural projects of Victorian Britain.

 

 

References:

Kathryn A. Neeley, Mary Somerville: Science, Illumination, and the Female Mind, Cambridge University Press, 2001

BUREK, C. V. & HIGGS, B. (eds) The Role of Women in the History of Geology. Geological Society, London, Special Publications, 281, 1–8. DOI: 10.1144/SP281.1.

Buckland, Adelene: Novel Science : Fiction and the Invention of Nineteenth-Century Geology, University of Chicago Press, 2013.

Marie Sanderson and Mary Somerville, Mary Somerville: Her Work in Physical, Geography, Geographical Review Vol. 64, No. 3 (July 1974), pp. 410-420.

Tilly Edinger and the study of ‘fossil brains’.

 

Tilly Edinger (Photo,Museum of Comparative Zoology, Harvard University, Cambridge, MA)

Tilly Edinger (Photo,Museum of Comparative Zoology, Harvard University, Cambridge, MA)

Johanna Gabriele Ottilie “Tilly” Edinger was born on November 13, 1897 in Frankfurt, Germany. She was the youngest daughter of the eminent neurologist Ludwig Edinger and Dora Goldschmidt.

Edinger’s scientific interests led her to university studies in zoology and, later, in geology and paleontology. She studied at Universities of Heidelberg, Frankfurt, and Munich. In 1921, she received her Ph. D at the University of Frankfurt. When she was preparing her doctoral dissertation about the palate of the Mesozoic marine reptile Nothosaurus, Edinger encountered a skull with a natural brain cast. Her early research was mostly descriptive and she was influenced by the work of Louis Dollo and Friedrich von Huene.  After obtained her degree, she worked as a volunteer at the Geological-Paleontological Institute of the University of Frankfurt, and later as the section head in vertebrate paleontology at the Senckenberg Museum.

During her time at the Museum, she gathered references of several endocranial casts  treated as isolated curiosities  in earlier texts. Using stratigraphy and comparative anatomy, she organized them taxonomically and summarized the inferences that could be drawn from them. Later, in 1929,  she published Die fossilen Gehirne (Fossil Brains), the book that established Edinger’s membership in the German and international paleontological communities.

Endocranial cast (left) and brain of the living hellbender Cryptobranchus alleganiensis used by Romer and Edinger (1942) to document the relationship between the endocranial cast and the soft tissue brain in a living amphibian.

Endocranial cast (left) and brain of the living hellbender Cryptobranchus alleganiensis used by Romer and Edinger (1942) to document the relationship between the endocranial cast and the soft tissue brain in a living amphibian.

When the Nazi Party reached the power in 1933, Edinger continued working at the Museum thanks to protective actions of Rudolf Richter, Director of the Senckenberg Museum, but after the events that followed the infamous “Kristallnacht” (Night of the Broken Glass), her paleontological career in Germany ended abruptly.

Thanks to her pioneering works and the contacts she made from a previous trip to London in 1926, Edinger emigrated to England in May 1939. She started working at the British Museum of Natural History, alternately translating texts and working on her own paleoneurological projects.

In 1940, with the support of Alfred S. Romer, she moved to Massachusetts to take a position at the Harvard Museum of Comparative Zoology. Shortly after, she was the first and only woman who attend the founding meeting of the Society of Vertebrate Paleontology (SVP).

Edinger’s series of horse brains, showing differences in size and external anatomy as well as order of stratigraphic occurrence (Edinger, 1948)

Edinger’s series of horse brains, showing differences in size and external anatomy as well as order of stratigraphic occurrence.

Her second seminal work was written in 1948: “Evolution of the Horse Brain”.  Her work suggested that both brain enlargement and superficially similar patterns of cortical sulcation (surficial folds and grooves) had arisen independently in different orders of mammals (Buchholtz, 2001). 

Her knowledge of neuroanatomy allowed her to extend the range of information recoverable from endocasts. Based on the enlarged optic lobes and cerebellum of Rhamphorhynchus specimens, Edinger was able to predict their sensory dominance of sight and the possession of flight capabilities in pterosaurs.

By the early 1950s, she was not only the major contributor to the field of paleoneurology but also the mentor to a younger generation that was following in her footsteps. She received several honorary doctorates for her achievements, including Wellesley College (1950), the University of Giessen (1957), and the University of Frankfurt  (1964). She was elected president of SVP in 1963.

Tilly Edinger and colleagues at the Museum of Comparative Zoology. Sitting left to right: Tilly Edinger, Harry B. Whittington, Ruth Norton, Alfred S. Romer, Nelda Wright, and Richard van Frank. Standing left to right: Arnold D. Lewis, Ernest E.Williams, Bryan Patterson, Stanley J. Olsen, and Donald Baird. (Photo: David Roberts, from Buchholtz, 2001)

Tilly Edinger and colleagues at the Museum of Comparative Zoology. Sitting left to right: Tilly Edinger, Harry B. Whittington, Ruth Norton, Alfred S. Romer, Nelda Wright, and Richard van Frank. Standing left to right: Arnold D. Lewis, Ernest E.Williams, Bryan Patterson, Stanley J. Olsen, and Donald Baird. (Photo: David Roberts, from Buchholtz, 2001)

Tilly Edinger died in 1967 as the result of a traffic accident. She had 69 years old.  Her last book: “Paleoneurology 1804-1966. An annotated bibliography”, was completed by several of her colleagues and is considered the necessary starting point for any project in paleoneurology

References:

Buchholtz, Emily A.; Seyfarth, Ernst-August (August 2001), “The Study of “Fossil Brains”: Tilly Edinger (1897–1967) and the Beginnings of Paleoneurology”, Bioscience 51 (8)
Susan Turner, Cynthia V. Burek and Richard T. J. Moody, Forgotten women in an extinct saurian (man’s) world, Geological Society, London, Special Publications 2010, v. 343, p. 111-153

Isabel Clifton Cookson, the first Australian palynologist.

Isabel Clifton Cookson (1893-1973). From Wikimedia Commons

Isabel Clifton Cookson (1893-1973). From Wikimedia Commons

Isabel Clifton Cookson was one of Australia’s first professional women scientists, but unlike Adele V. Vicent, who studied  the importance Silurian-Devonian floras in Victoria,  her scientific work is well recognized.  She was one of the most prominent palynologist of the twenty century. She described a total of 110 genera, 557 species and 32 sub especific taxa of palynomorphs and plants, and published 93 scientific papers (some of them in collaboration with other prominent scientists).

She was born on December 25, 1893 in Melbourne, Australia. After graduating in Zoology and Botany at the University of Melbourne in 1916, she worked for a brief time at the National Museum of Victoria and became interested in fossil plants. 

Between 1916 and 1917 she received the Government Research Scholarship, for work on the flora of the Northern Territory of Australia and was awarded with the McBain Research Scholarship in biology. She also collaborated with some illustrations to the  book The Flora of the Northern Territory by Alfred J. Ewart and O. B. Davies.

Cooksonia pertoni, one of the earliest land plants (Credit: Hans Steur, The Netherlands.)

Cooksonia pertoni, one of the earliest land plants (Credit: Hans Steur, The Netherlands.)

In 1925, she went to England  to study with Professor Le Rayner  and with Professor Sir A. C. Seward, an authority on  fossil plants. She returned a year later as a mycologist in cotton research in the University of Manchester, where she met Professor W. H. Lang.  She started an important and  productive academic relationship with Lang, who named the genus Cooksonia in her honour.

In 1932, she returned to Melbourne and became mentor of many female researchers like Lorna Medwell and Mary E. Dettmann.

During the 1940s , she began to conduct detailed palaeobotanical studies, with emphasis on pollen analysis and demonstrated the importance of plant microfossils  in biostratigraphy  and in oil exploration.

Lingulodinium machaerophorum is a dinoflagellate cyst first described by Deflandre and Cookson. From UCL.

Lingulodinium machaerophorum is a dinoflagellate cyst first described by Deflandre and Cookson. From UCL.

In the early 1950s, she was a pioneer in the study of marine palynomorphs: dinoflagellate cysts, acritarchs and chitinozoans from Australian Tertiary and Mesozoic sediments. She also worked with George Deflandre and Alfred Eisenack.

Although her important work, she only reached the senior lecturer status in the department of botany and officially retired in 1959.

After her retirement, she  continued doing active research work  mainly by self-funding thanks to her skills as an investor on the stock exchange.

Isabel Clifton Cookson died on 1 July 1973 at her Hawthorn home. In her honor,  the Botanical Society of America gives the Isabel Cookson Award since 1976,  to the best paper on palaeobotany presented at their annual meeting.

References:

Riding, James B.; Dettmann, Mary E.. 2013 The first Australian palynologist: Isabel Clifton Cookson (1893–1973) and her scientific work. Alcheringa: An Australasian Journal of Palaeontology. 1-33. 10.1080/03115518.2013.828252

Mary E. Dettmann, ‘Cookson, Isabel Clifton (1893–1973)’, Australian Dictionary of Biography, National Centre of Biography, Australian National University