Introducing Caihong juji

Caihong juji holotype specimen (Hu, et al., 2018)

Over the last 10 years, theropod dinosaurs from the Middle-Late Jurassic Yanliao Biota have offered rare glimpses of the early paravian evolution and particularly the origin of birds. The first discovered Yanliao non-scansoriopterygid theropod was Anchiornis huxleyi, and since then several other extremely similar species have also been reported. Caihong juji, a newly discovered Yanliao specimen, exhibits an array of osteological features, plumage characteristics, and putative melanosome morphologies not previously seen in other Paraves. The name Caihong is from the Mandarin ‘Caihong’ (rainbow). The specific name, juji is from the Mandarin ‘ju’ (big) and ‘ji’ (crest), referring to the animal’s prominent lacrimal crests.

The holotype (PMoL-B00175) is a small, articulated skeleton with fossilized soft tissues, preserved in slab and counter slab, collected by a local farmer from Qinglong County, Hebei Province, China, and acquired by the Paleontological Museum of Liaoning in February, 2014. The specimen (estimated to be ~400 mm in total skeletal body length with a body mass of ~475 g) exhibits the following autapomorphies within Paraves: accessory fenestra posteroventral to promaxillary fenestra, lacrimal with prominent dorsolaterally oriented crests, robust dentary with anterior tip dorsoventrally deeper than its midsection and short ilium.

Caihong juji differs from Anchiornis huxleyi in having a shallow skull with a long snout, forelimb proportionally short, and forearm proportionally long. Caihong also resembles basal troodontids and to a lesser degree basal dromaeosaurids in dental features (anterior teeth are slender and closely packed, but middle and posterior teeth are more stout and sparsely spaced; and serrations are absent in the premaxilla and anterior maxilla).

Platelet-like nanostructures in Caihong juji and melanosomes in iridescent extant feathers (Hu, et al., 2018)

Feathers are well preserved over the body, but in some cases, they are too densely preserved to display both gross and fine morphological features. The contour feathers are proportionally longer than those of other known non-avialan theropods. The tail feathers resemble those of Archaeopteryx, and the troodontid Jinfengopteryx in having large rectrices attaching to either side of the caudal series forming a frond-shaped tail, a feature that has been suggested to represent a synapomorphy for the Avialae.

But, the most remarkable feature observed in Caihong, is the presence of some nanostructures preserved in the head, chest, and parts of its tail, that have been identified as melanosomes. They are long, flat, and organized into sheets, with a pattern similar of those of the iridescent throat feathers of hummingbirds.

Recovered as a basal deinonychosaur, Caihong shows the earliest asymmetrical feathers and proportionally long forearms in the theropod fossil record wich indicates locomotor differences among closely related Jurassic paravians and has implications for understanding the evolution of flight-related features.

References:

Hu, et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nature (2018) doi:10.1038/s41467-017-02515-y

Godefroit, P. et al. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498, 359–362 (2013).

Advertisements

The bizarre Halszkaraptor escuilliei

H. escuilliei MPC D-102/109. From Cau et al., 2017.

Maniraptoran lineages evolved novel ecomorphologies during the Cretaceous period, including active flight, gigantism, cursoriality and herbivory. This group share the following characteristics: large brain but a reduced skull in comparison to their body size, beaks, and smaller teeth. Now, a well-preserved maniraptoran from Mongolia, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., adds an amphibious ecomorphology to those evolved by maniraptorans.

The holotype, MPC (Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia) D-102/109, is an articulated and almost complete skeleton preserved three-dimensionally. The generic name, honours Halszka Osmólska (1930–2008) for her contributions to theropod palaeontology. The species name, ‘escuilliei’ refers to François Escuillié, who returned the holotype to Mongolia.

Reconstruction of Halszkaraptor escuilliei. Photograph: Lukas Panzarin/Andrea Cau

Halszkaraptor is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. It was the size of a mallard. Originally poached from Ukhaa Tolgod, Mongolia, the fossil was in private collections in Japan and England for an unknown amount of time, and later it  was transferred to the Royal Belgian Institute of Natural Sciences (RBINS). Thanks to a cooperation agreement between the Ministry of Education, Culture and Science of Mongolia, the Belgian Science Policy Office and the RBINS, the specimen returned to the Institute of Paleontology and Geology, Mongolian Academy of Science.

The skeleton is almost complete. The skull is lightly built, and is still articulated with the first cervical vertebra. The preorbital region forms 60% of basicranial length, and each premaxilla is elongate, bearing eleven teeth, the highest number among dinosaurs. The presacral vertebrae include 10 cervicals and 12 dorsals. The neck forms 50% of snout–sacrum length.

Skull of H. escuilliei. From Cau et al., 2017

The forelimb is relatively shorter than in most dromaeosaurids. The ulna is flattened and possesses an acute posterior margin. The hand has a morphology that is unique among theropods, with a progressive elongation of the lateral fingers, with the third being the longest and most robust. The 76 mm long femur has a robust greater trochanter. The metatarsus lacks cursorial adaptations and measures 80% of femoral length. The feet are complete and articulated, although some elements are poorly visible.

Based on the neck hyperelongation for food procurement, the forelimb proportions that may support a swimming function, and postural adaptations convergent with short-tailed birds, Halszkaraptor may represent the first case among non-avian dinosaurs of a double locomotory module.

References:

Cau, A.; Beyrand, V.; Voeten, D.; Fernandez, V.; Tafforeau, P.; Stein, K.; Barsbold, R.; Tsogtbaatar, K.; Currie, P.; Godrfroit, P.; “Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs”. Nature. doi:10.1038/nature2467