Solving a Darwinian mystery

Macrauchenia patachonica by Robert Bruce Horsfall.

During the first two years of his voyage aboard HMS Beagle, Charles Darwin collected a considerable number of fossil mammals from various South American localities. Darwin sent all the specimens to the Reverend Professor John Stevens Henslow, his mentor and a close friend. The samples were deposited in the Royal College of Surgeons where Richard Owen began its study. Between 1837 and 1845, Owen described eleven taxa, including: Toxodon platensis, Macrauchenia patachonica, Equus curvidens, Scelidotherium leptocephalum, Mylodon darwinii, and Glossotherium sp.

Macrauchenia, meaning “big neck,” was named by Richard Owen based on limb bones and vertebrae collected by Charles Darwin on January 1834 at Puerto San Julian, in Santa Cruz Province, Argentina. The bizarre animal had a camel-like body, with sturdy legs, a long neck and a relatively small head. Owen described as “A large extinct Mammiferous Animal, referrible to the Order Pachydermata; but with affinities to the Ruminantia, and especially to the Camelidae”Macrauchenia is now considered among the more derived native South American litopterns, an endemic order whose fossil record extends from the Paleocene to the end of the Pleistocene and includes some 50 described genera. Darwin also made inferences about the environment which Macrauchenia lived: “Mr. Owen… considers that they form part of an animal allied to the guanaco or llama, but fully as large as the true camel. As all the existing members of the family of Camelidae are inhabitants of the most sterile countries, so we may suppose was this extinct kind… It is impossible to reflect without the deepest astonishment, on the changed state of this continent. Formerly it must have swarmed with great monsters, like the southern parts of Africa, but now we find only the tapir, guanaco, armadillo, capybara; mere pigmies compared to antecedents races… Since their loss, no very great physical changes can have taken place in the nature of the Country. What then has exterminated so many living creatures?…We are so profoundly ignorant concerning the physiological relations, on which the life, and even health (as shown by epidemics) of any existing species depends, that we argue with still less safety about either the life or death of any extinct kind” (Voyage of the Beagle, Chapter IX, Jan. 1834).

Dated mitogenomic phylogenetic tree. (From Westbury, M. et al)

The unusual morphological traits displayed by extinct South American native ungulates defied both Charles Darwin and Richard Owen, who tried to resolve their relationships. Two recently published molecular studies, using protein (collagen) sequence information, found that litopterns as well as notoungulates formed a monophyletic unit that shared more recent common ancestry with Perissodactyla than with any other extant placental group.

A valuable tool for uncovering phylogenetic relationships of extinct animals is ancient DNA (aDNA), although, attempts to use standard aDNA methodologies to collect genetic material from specimens from low-latitude localities have been largely unsuccessful. However, a new study recovered a nearly complete mitochondrial genome for Macrauchenia from a cave in southern Chile. The small size of the mitochondrial genome simplifies the assembly of fossil sequences using de novo methods.

In theory, reconstructing an ancient genome de novo can be undertaken without relying on a close relative’s DNA for guidance, but due to contaminant DNA and low average fragment lengths, de novo assembly is generally considered not computationally feasible. A promising new approach is using  the genetic codes of numerous living species as reference points, allowing them to reliably predict the fossil’s likeliest genetic sequences. Using the new approach, the phylogenetic analyses place Macrauchenia as a sister taxon to all living Perissodactyla, with the origin of Panperissodactlya at 66 Ma.

 

References:

Westbury, M. et al. A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonicaNat. Commun. 8, 15951 doi: 10.1038/ncomms15951 (2017).

Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015). doi:10.1038/nature14249

Buckley, M. Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates’. Proc. Biol. Sci. 282, 20142671 (2015). DOI: 10.1098/rspb.2014.2671

Darwin’s Fossil Mammals.

Portrait of Charles Darwin painted by George Richmond (1840)

Portrait of Charles Darwin painted by George Richmond (1840)

When Charles Darwin arrived to South America, he was only 22 years old. He was part of the second survey expedition of HMS Beagle. During the first two years of his voyage aboard HMS Beagle, Darwin collected a considerable number of fossil mammals from various South American localities. He sent all the specimens, to his mentor John Stevens Henslow. The samples were deposited in the Royal College of Surgeons where Richard Owen began its study. Between 1837 and 1845, Owen described eleven taxa, including: Toxodon platensis, Macrauchenia patachonica, Equus curvidens, Scelidotherium leptocephalum, Mylodon darwinii and Glossotherium sp. Previous to this expedition, the first news of “fossils” in South American were reported by early Spanish explorers, and George Cuvier, in 1796,  published the first scientific work about Megatherium americanum, based on the specimen recovered by Fray Manuel Torres from Lujan, Buenos Aires, Argentina.

Darwin recovered his first fossil at Punta Alta (Buenos Aires Province, Argentina) on September 23, 1832, and continued collecting intermittently at this locality until October 16. Later, he went to Monte Hermoso and returned to Punta Alta between August 29 – 31, 1833. Then, he moved to Guardia del Monte (Buenos Aires Province); the Rio Carcarañá (Santa Fe Province, Argentina), and the Bajada Santa Fe (Paraná, Entre Ríos Province, Argentina). After a short stay in Uruguay, Darwin returned to Argentina and collected his last specimens at Puerto San Julián (Santa Cruz Province) in 1834. During his journey between Buenos Aires and Santa Fe he wrote “We may therefore conclude that the whole area of the Pampas is one wide sepulchre for these extinct quadrupeds” (Voyage of the Beagle, Chapter VII, Oct. 1833).

Fossil Toxodon on display at Bernardino Rivadavia Natural Sciences Museum.

Fossil Toxodon on display at Bernardino Rivadavia Natural Sciences Museum.

Toxodon was named by Owen based on a large skull purchased by Darwin. He paid 18 pence for it. Darwin described it as “one of the strangest animals, ever discovered…” Owen bestowed the name because its upper incisors were strongly arched (Toxodon means “arched tooth”). He also recognized Toxodon as “A gigantic extinct mammiferous animal, referable to the Order Pachydermata, but with affinities to the Rodentia, Edentata, and Herbivorous Cetacea”. Toxodonts shares a number of dental, auditory and tarsal specializations. They had  short hippopotamus-like head with broad jaws filled with bow shaped teeth and incisors, a massive skeleton with short stout legs with three functional toes. The estimated weight is over a tonne. About the different groups that appeared to be related to Toxodon, Darwin stated:“How wonderfully are the different orders, at the present time so well separated, blended together in different points of the structure of Toxodon”

A recent phylogenetic analysis indicates that Toxodon is most closely related to perissodactyls, a group that includes rhinos, tapirs, and horses.

Macrauchenia patachonica by Robert Bruce Horsfall.

Macrauchenia patachonica by Robert Bruce Horsfall.

Macrauchenia, meaning “big neck,” was named by Owen based on limb bones and vertebrae collected by Darwin in January 1834 at Puerto San Julian, in Santa Cruz Province, Argentina. The bizarre animal had a camel-like body, with sturdy legs, a long neck and a relatively small head. Owen described as “A large extinct Mammiferous Animal, referrible to the Order Pachydermata; but with affinities to the Ruminantia, and especially to the Camelidae”. Macrauchenia is now considered among the more derived native South American litopterns. Darwin also made inferences about the environment which Macrauchenia lived: “Mr. Owen… considers that they form part of an animal allied to the guanaco or llama, but fully as large as the true camel. As all the existing members of the family of Camelidae are inhabitants of the most sterile countries, so we may suppose was this extinct kind… It is impossible to reflect without the deepest astonishment, on the changed state of this continent. Formerly it must have swarmed with great monsters, like the southern parts of Africa, but now we find only the tapir, guanaco, armadillo, capybara; mere pigmies compared to antecedents races… Since their loss, no very great physical changes can have taken place in the nature of the Country. What then has exterminated so many living creatures?…We are so profoundly ignorant concerning the physiological relations, on which the life, and even health (as shown by epidemics) of any existing species depends, that we argue with still less safety about either the life or death of any extinct kind” (Voyage of the Beagle, Chapter IX, Jan. 1834).

Scelidotherium leptocephalum, Muséum national d'Histoire naturelle, Paris (From Wikimedia Commons)

Scelidotherium leptocephalum, Muséum national d’Histoire naturelle, Paris (From Wikimedia Commons)

Darwin recovered fossil remains of at least five species of giant ground sloth. In a letter sent to John Stevens Henslow in November, 1832, Darwin listed the fossils collected, among which he emphasized “… the upper jaw & head of some very large animal, with 4 square hollow molars — & the head greatly produced infront. — I at first thought it belonged either to the Megalonyx or Megatherium.” Darwin decided in favor of Megatherium based on the presence of osteoderms collected in the same formation, but Owen (1838-1840) recognized the specimens assigned by Darwin to Megatherium as glyptodonts, toxodonts, and large ground sloths (Fernicola et al., 2009; Allmon 2015). Scelidotherium, was described by Owen on the basis of the only nearly complete skeleton found by Darwin at Punta Alta (Buenos Aires Province). Darwin considered the specimen as “allied to the Rhinoceros”. Scelidotherium is distinctive by an elongated, superficially anteater-like head. Another sloth, Mylodon was named by Richard Owen on the basis of a nearly complete lower jaw with teeth, which was found by Charles Darwin at Punta Alta (Buenos Aires Province). Owen (1839b) erected Mylodon for two species, Mylodon darwini and Mylodon harlani. The former species was based on a left dentary from Punta Alta (Buenos Aires Province), whereas the second was based on a cast of a mandible from North America.

Fossil mammals collected by Charles Darwin in South America during the voyage of H.M.S. Beagle (From Allmon, 2015).

Fossil mammals collected by Charles Darwin in South America during the voyage of H.M.S. Beagle (From Allmon, 2015).

Darwin also found fossil horse teeth assignable to the modern genus Equus. The two molars from Argentina were recovered from Punta Alta (Buenos Aires Province) and Bajada Santa Fe (Entre Rios Province), and represent the first fossil horses found in South America. He wrote: “Certainly it is a marvellous event in the history of animals that a native kind should have disappeared to be succeeded in after ages by the countless herds introduced with the Spanish colonist! (1839, p. 150).

By the end of the expedition, Darwin was already earned a name as a geologist and fossil collector. He narrated his experiences in his book “Journal of Researches into the Geology and Natural History of the Various Countries visited by H.M.S. Beagle, under the Command of Captain FitzRoy, R.N. from 1832 to 1836″, published in 1839 and later simply known as “The Voyage of the Beagle”. When Darwin wrote his memories in 1858, he described the expedition in one strong and powerful sentence: “the voyage of the Beagle has been by far the most important event in my life and has determined my whole career”.

 

References:

Warren D. Allmon (2015): Darwin and palaeontology: a re-evaluation of his interpretation of the fossil record, Historical Biology, DOI: 10.1080/08912963.2015.1011397

Fernicola JC, Vizcaíno SF, de Iuliis G. 2009. The fossil mammals collected by Charles Darwin in South America during his travels on board the HMS Beagle. Revista de la Asocición Geológica Argentina. 64(1):147–159.

Fariña, Richard A.; Vizcaíno, Sergio F.; De Iuliis, Gerry (2013). Megafauna. Giant Beasts of Pleistocene South America. Indiana University Press.

 

Owen, Dickens and the ‘invention’ of dinosaurs.

Sir Richard Owen (1804-1892)

Sir Richard Owen (1804-1892)

On 20 February 1824, William Buckland published the first report of a large carnivore animal: the Megalosaurus. He had a piece of a lower jaw, some vertebrae, and fragments of a pelvis, a scapula and hind limbs, probably not all from the same individual. Buckland’s published description was based on specimens in the Ashmolean Museum, in the collection of Gideon Algernon Mantell of Lewes in Sussex and a sacrum donated by Henry Warburton (1784–1858). One year later, the Iguanodon entered in the books of History followed by the description of Hylaeosaurus in 1833. After examined the anatomy of these three genera, Richard Owen recognized that Iguanodon, Megalosaurus, and Hylaeosaurus share several traits that distinguished them from other ancient or living creatures, like their giant size and five fused vertebrae welded to their pelvic girdle. In April 1842, Owen created the “Dinosauria” : “The combination of such characters, some, as it were, from groups now distinct from each other, and all manifested by creatures far surpassing in size the largest of existing reptiles, will, it is presumed, be deemed sufficient ground for establishing a distinct tribe or suborder of Saurian Reptiles, for which I would propose the name of Dinosauria.“(Richard Owen, “Report on British Fossil Reptiles.” Part II. Report of the British Association for the Advancement of Science, Plymouth, England, 1842)

Megalosaurus sacrum with fused vertebrae (from Buckland 1824, pl. 42).

Megalosaurus sacrum with fused vertebrae (from Buckland 1824, pl. 42).

It was an exciting time full of discoveries and the concept of an ancient Earth became part of the public understanding. The study of the Earth was central to the economic and cultural life of the Victorian Society and Literature influenced the pervasiveness of geological thinking. Mr Venus, the taxidermist in  Dickens’s Our Mutual Friend (1864–65) was slightly based on Richard Owen. By the time when Dickens wrote this novel, Owen was the curator of the Hunterian Museum of the Royal College of Surgeons. Our Mutual Friend, also exhibits  traces of the work of Lyell, Jean-Baptiste Lamarck, and Darwin. Dickens  also published some of Owen’s work in his periodical, Household Words and All the Year Round.

Owen used his influence with Prince Albert, Queen Victoria’s husband, to propose the financing of the three-dimensional reconstruction of the first known dinosaurs: Megalosaurus, Iguanodon and Hylaeosaurus, for the closure of the first international exposition in modern European history: the Crystal Palace exhibition. About six million people visited the Great Exhibition. Megalosaurus became so popular that is mentioned in Charles Dickens’s novel Bleak House: “Implacable November weather. As much mud in the streets as if the waters had but newly retired from the face of the earth, and it would not be wonderful to meet a Megalosaurus, forty feet long or so, waddling like an elephantine lizard up Holborn Hill.”  It was the first appearance of a dinosaur in popular literature.

Reference:

Buckland, Adelene , ‘“The Poetry of Science”: Charles Dickens, Geology and Visual and Material Culture in Victorian London’, Victorian Literature and Culture, 35 (2007), 679–94 (p. 680).

Moody, R. T. J., Buffetaut, E., Naish, D.& Martill, D. M. (eds) Dinosaurs and Other Extinct Saurians: A Historical Perspective. Geological Society, London, Special Publications, 343, 335–360

RUPKE, N. A. (2009): Richard Owen. Biology without Darwin. University of Chicago Press: 344

Torrens, H. S. (2014), The Isle of Wight and its crucial role in the ‘invention’ of dinosaurs. Biological Journal of the Linnean Society, 113: 664–676. doi: 10.1111/bij.12341

 

Darwin, Owen and the ‘London specimen’.

Portrait of Charles Darwin painted by George Richmond (1840)

Portrait of Charles Darwin painted by George Richmond (1840)

The Archaeopteryx story began in  the summer of 1861, two years after the publication of the first edition of Darwin’s Origin of Species, when workers in a limestone quarry in Germany discovered the impression of a single 145-million-year-old feather. On August 15, 1861, German paleontologist Hermann von Meyer wrote a letter to the editor of the journal Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, where he made the first description of the fossil. Later, on September 30, 1861, he wrote a new letter:  “I have inspected the feather from Solenhofen closely from all directions, and that I have come to the conclusion that this is a veritable fossilisation in the lithographic stone that fully corresponds with a birds’ feather. I heard from Mr. Obergerichtsrath Witte, that the almost complete skeleton of a feather-clad animals had been found in the lithographic stone. It is reported to show many differences with living birds. I will publish a report of the feather I inspected, along with a detailed illustration. As a denomination for the animal I consider Archaeopteryx lithographica to be a fitting name”. 

The near complete fossil skeleton found in a Langenaltheim quarry near Solnhofen – with clear impressions of wing and tail feathers –  was examined by Andreas Wagner, director of the Paleontology Collection of the State of Bavaria in Germany. He reached the conclusion that the fossil was a reptile, and gave it the name Griphosaurus. He wrote: “Darwin and his adherents will probably employ the new discovery as an exceedingly welcome occurrence for the justification of their strange views upon the transformations of animals.”

Archaeopteryx lithographica, Archaeopterygidae, Replica of the London specimen; Staatliches Museum für Naturkunde Karlsruhe, Germany. From Wikimedia Commons

Archaeopteryx lithographica, Archaeopterygidae, Replica of the London specimen; Staatliches Museum für Naturkunde Karlsruhe, Germany. From Wikimedia Commons

The fossil was later bought by the British Museum of Natural History in London. Richard Owen, head of the Museum, was the first to describe the fossil and named it Archaeopteryx macrura, arguing that its identity with Meyer’s specimen could not be satisfactorily established (Owen 1862a, p. 33 n.). This fossil is also know as the London specimen. Owen, a fervent opponent of the evolutionary theory of Charles Darwin, was convinced that all animals within each larger systematic group were only variations of a single theme, the ‘ideal archetype’.

Hugh Falconer, a Scottish geologist and paleontologist, saw the Archaeopteryx as a valid “transitional” fossil. At that time, he was in  a dispute with Owen, and pointed out that Owen’s description of the Archaeopteryx had missed some essential elements. On January 3, 1863, he wrote a letter to Darwin about the significance of this fossil:  “It is a much more astounding creature—than has entered into the the conception of the describer—who compares it with the Raptores & Passeres & Gallinaceæ, as a round winged (like the last) `Bird of flight.’ It actually had at least two long free digits to the fore limb—and those digits bearing claws as long and strong as those on the hind leg. Couple this with the long tail—and other odd things,—which I reserve for a jaw—and you will have the sort of misbegotten-bird-creature—the dawn of an oncoming conception `a la Darwin.”

Darwin answered that letter on January 20, 1863, and commented about Owen’s mistake: “Has God demented Owen, as a punishment for his crimes, that he should overlook such a point?. “

Richard Owen stands next to the largest of all moa, Dinornis maximus (now D. novaezealandiae). From Wikimedia Commons.

Richard Owen stands next to the largest of all moa, Dinornis maximus (now D. novaezealandiae). From Wikimedia Commons.

In later editions of The Origin of Species, Darwin mention the Archaeopteryx: “That strange bird, Archaeopteryx, with a long lizardlike tail, bearing a pair of feathers on each joint, and with its wings furnished with two free claws . . . Hardly any recent discovery shows more forcibly than this, how little we as yet know of the former inhabitants of the world.”

 

References:

MEYER v., H. (1861): Archaeopterix lithographica (Vogel-Feder) und Pterodactylus von Solenhofen. Neues Jahrbuch fur Mineralogie, Geognosie, Geologie und Petrefakten-Kunde. 6: 678-679

Falconer, H. letter of January 3, 1863 to Charles Darwin; The Correspondence of Charles Darwin Vol. 11, edited by F. Furkhardt, DM Porter, S. A Dean, J. R Tophan, and S. Wilmot.  Cambridge University Press, Cambridge, 1999

OWEN, R. (1863): On the Archaeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philosophical Transactions of the Royal Society of London 153: 33-47

Prothero, D. R.  Evolution: What the Fossils Say and Why it Matters. Columbia University Press, New York, 2007.

Peter Wellnhofer, A short history of research on Archaeopteryx and its relationship with dinosaurs, Geological Society, London, Special Publications, 343:237-250, doi:10.1144/SP343.14, 2010

 

Links:

Darwin Correspondence Project http://www.darwinproject.ac.uk/entry-3899

 

Christmas edition: Geologizing with Dickens

Charles Dickens in his Study, 1859 by William Powell Frith. From Wikimedia Commons.

Charles Dickens in his Study, 1859 by William Powell Frith. From Wikimedia Commons.

In the nineteenth century, Geology becomes very popular among the British society. Novels and newspapers often parodied scientists. One example of this is Professor Dingo, a very enthusiastic geologist from Charles Dickens’s novel Bleak House (1852-1853).

Dickens was a very important literary figure. He mixed with a great number of scientific men and women. Among his friends was Richard Owen. Dickens published some of Owen’s work in his periodical, Household Words and All the Year Round. Mr Venus, the taxidermist in  Dickens’s Our Mutual Friend (1864–65) was slightly based on Richard Owen. By the time when Dickens wrote this novel, Owen was the curator of the Hunterian Museum of the Royal College of Surgeons. Our Mutual Friend, also exhibits  traces of the work of Lyell, Jean-Baptiste Lamarck, and Darwin.

Cover of serial, "Bleak House" by Charles Dickens. From Wikimedia Commons.

Cover of serial, “Bleak House” by Charles Dickens. From Wikimedia Commons.

Dickens, contributed to the popularity of geology with the creation of ideas and images for public consumption, such as he did in Bleak House, with the description of the streets of London where ancient lizards roamed, and volcanoes and quakes shocked the earth.

This is the opening paragraph:

“London. Michaelmas term lately over, and the Lord Chancellor sitting in Lincoln’s Inn Hall. Implacable November weather. As much mud in the streets as if the waters had but newly retired from the face of the earth, and it would not be wonderful to meet a Megalosaurus, forty feet long or so, waddling like an elephantine lizard up Holborn Hill. Smoke lowering down from chimney-pots, making a soft black drizzle, with flakes of soot in it as big as full-grown snowflakes—gone into mourning, one might imagine, for the death of the sun. Dogs, undistinguishable in mire. Horses, scarcely better; splashed to their very blinkers. Foot passengers, jostling one another’s umbrellas in a general infection of ill temper, and losing their foot-hold at street-corners, where tens of thousands of other foot passengers have been slipping and sliding since the day broke (if this day ever broke), adding new deposits to the crust upon crust of mud, sticking at those points tenaciously to the pavement, and accumulating at compound interest.”

It was the first appearance of a dinosaur in popular literature, but it was not until two years after the publication of Bleak House that the public saw the Megalosaurus reconstruction at the grand reopening of the Crystal Palace.

References:

Dickens, Charles, “Bleak House”, Penguin Books, 1994.

Buckland, Adelene , ‘“The Poetry of Science”: Charles Dickens, Geology and Visual and Material Culture in Victorian London’, Victorian Literature and Culture, 35 (2007), 679–94 (p. 680).

Historical perspective on the origin of Dinosauria

Megalosaurus at Crystal Palace Park, London. From Wikimedia Commons.

Megalosaurus at Crystal Palace Park, London. From Wikimedia Commons.

In the nineteen century, the famous Victorian anatomist Richard Owen diagnosed Dinosauria using three taxa: Megalosaurus, Iguanodon and Hylaeosaurus, on the basis of three main features: large size and terrestrial habits, upright posture and sacrum with five vertebrae (because the specimens were from all Late Jurassic and Cretaceous, he didn’t know that the first dinosaurs had three or fewer sacrals). This characteristics were more mammalian. He even speculated that dinosaur had four-chambered hearts and warm blood like mammals.

New fossil findings from Europe and particularly North America forced to a new interpretation about those gigantic animals. In 1887, Harry Govier Seeley summarised the works of Cope, Huxley and Marsh who already subdivided the group Dinosauria into various orders and suborders. However, he was the first to subdivide dinosaurs into Saurischians and the Ornithischians, based on the nature of their pelvic bones and joints. Based on these features, Seeley denied the monophyly of dinosaurs.

Seeley’s (1901) diagram of the relationships of Archosauria. From Padian 2013

Seeley’s (1901) diagram of the relationships of Archosauria. From Padian 2013

At the mid 20th century, the consensual views about Dinosauria were: first, the group was not monophyletic; second almost no Triassic ornithischians were recognised, so they were considered derived morphologically, which leads to the third point, the problem of the ‘‘origin of dinosaurs’’ usually was reduced to the problem of the ‘‘origin of Saurischia,’’ because theropods were regarded as the most primitive saurischians.
In 1968, Romer wrote that ‘‘Very probably the saurischians arose in mildly polyphyletic fashion from two or several pseudosuchian forms.’’

A great influence on the views about the dinosaur origins was Alan Charig. He was Curator of Amphibians, Reptiles and Birds at the British Museum (Natural History), now the Natural History Museum, in London for almost thirty years. Charig thought that the first dinosaurs were quadrupedal, not bipedal. He based this on the kinds of animals that he and his colleagues found in the early Triassic localities of eastern and South Africa. He thought that forms such as ‘‘Mandasuchus’’ were related to dinosaurs, but that they had a posture intermediate between a sprawling and upright gait that he called ‘‘semi-improved” or ‘‘semi-erect’’.

 Herrerasaurus skull. From Wikimedia Commons.

Herrerasaurus skull. From Wikimedia Commons.

The discovery of Lagosuchus and Lagerpeton from the Middle Triassic of Argentina (Romer 1971, 1972; Bonaparte 1975) induced a change in the views of dinosaurs origins. Also from South America came a variety of new dinosaurs, including the basal dinosaurs Herrerasaurus and Ischisaurus from the Ischigualasto Formation, the basal sauropodomorphs Saturnalia, Panphagia, Chromogisaurus, and the theropods Guibasaurus and Zupaysaurus, but no ornithischians except a possible heterodontosaurid jaw fragment from Patagonia.
The 70s marked the beginning of the a profound shift in thinking on nearly all aspects of dinosaur evolution, biology and ecology. This process was called the dinosaur renaissance.

In 1974 Robert Bakker and Peter Galton, based on John Ostrom’s vision about Dinosauria, proposed, for perhaps the first time since 1842, that Dinosauria was indeed a monophyletic group and that it should be separated (along with birds) from other reptiles as a distinct ‘‘Class”.

Gauthier, in 1986, showed that Dinosauria was cladistically monophyletic and that birds were hierarchically included in Saurischia and Theropoda.

A meeting of vertebrate paleontologists (1968). From left to right: Romer, Bonaparte, W. Sill, R. Casamiquela, R. Pascual and O. Reig. (From F. Novas, 2009)

A meeting of vertebrate paleontologists (1968). From left to right: Romer, Bonaparte, W. Sill, R. Casamiquela, R. Pascual and O. Reig. (From F. Novas, 2009)

As pointed out by Steve Brusatte: “The evolutionary radiation of dinosaurs did not follow a simple pattern, but by the Early Jurassic, the Age of Dinosaur dominance was in full swing.”

References:

Padian K 2013. The problem of dinosaur origins: integrating three approaches to the rise of Dinosauria. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Available on CJO 2013 doi:10.1017/S1755691013000431