The EECO, the warmest interval of the past 65 million years.

Cenozoic strata on Seymour Island, Antarctica (© 2016 University of Leeds)

Cenozoic strata on Seymour Island, Antarctica (© 2016 University of Leeds)

During the last 540 million years, Earth’s climate has oscillated between three basic states: Icehouse, Greenhouse (subdivided into Cool and Warm states), and Hothouse (Kidder & Worsley, 2010). The “Hothouse” condition is relatively short-lived and is consequence from the release of anomalously large inputs of CO2 into the atmosphere during the formation of Large Igneous Provinces (LIPs), when atmospheric CO2 concentrations may rise above 16 times (4,800 ppmv), while the “Icehouse” is characterized by polar ice, with alternating glacial–interglacial episodes in response to orbital forcing. The ‘Cool Greenhouse” displays  some polar ice and alpine glaciers,  with global average temperatures between 21° and 24°C. Finally, the ‘Warm Greenhouse’ lacked of any polar ice, and global average temperatures might have ranged from 24° to 30°C.

Reconstructions of Earth’s history have considerably improved our knowledge of episodes of rapid emissions of greenhouse gases and abrupt warming. Consequently, the development of different proxy measures of paleoenvironmental parameters has received growing attention in recent years.

A) Scanning electron microphotographs of fossil Ginkgo adiantoides cuticle showing stomata (arrows) and epidermal cells. B) Scanning electron microphotographs of modern Ginkgo biloba cuticle.

A) Scanning electron microphotographs of fossil Ginkgo adiantoides cuticle showing stomata (arrows) and epidermal cells. B) Scanning electron microphotographs of modern Ginkgo biloba cuticle (From Smith et al. 2010)

The early Eocene was characterized by a series of short-lived episode  of global warming, superimposed on a long-term early Cenozoic warming trend. Atmospheric CO2 was the major driver of the overall warmth of the Eocene. For  the  Paleocene-Eocene  Thermal  Maximum (PETM; 55.8 million years ago), and the Early Eocene Climate Optimum (EECO; 51 to 53 million years ago) the transient rise of global temperatures has been estimated to be 4 to 8° (Hoffman et al., 2012).

Reconstructions using multiple climate proxy records, identified the EECO as the warmest interval of the past 65 million years. One such proxy measure is the stomatal frequency of land plants, which has been shown in some species to vary inversely with atmospheric pCO2 and has been used to estimate paleo-pCO2 for multiple geological time periods. Stomata are the controlled pores through which plants exchange gases with their environments, and play a key role in regulating the balance between photosynthetic productivity and water loss through transpiration. (Smith et al., 2010).

Sin título

Foraminiferal assemblage of the EECO (From KHANOLKAR and SARASWATI, 2015)

Pollen and other palynomorphs proved to be an extraordinary tool to palaeoenvironmental reconstruction. Terrestrial  microflora from the EECO indicates a  time  period  with  warm  and  humid  climatic  conditions and displays a higher  degree  of tropicality  than the microflora of  the PETM.

A new high-fidelity record of CO2 can be obtained by using the boron isotope of well preserved planktonic foraminifera. The boron isotopic composition of seawater is also recquiered to estimate the pH. The global mean surface temperature change for the EECO is thought to be ~14 ± 3 °C warmer than the pre-industrial period, and ~5 °C warmer than the late Eocene.

Evolution of atmospheric CO2 levels and global climate over the past 65 million years

Evolution of atmospheric CO2 levels and global climate over
the past 65 million years (From Zachos et al., 2008)

Since the start of the Industrial Revolution the anthropogenic release of CO2 into the Earth’s atmosphere has increased a 40%. Glaciers  from the Greenland and Antarctic Ice Sheets are fading away, dumping 260 billion metric tons of water into the ocean every year. The ocean acidification is occurring at a rate faster than at any time in the last 300 million years, and  the patterns of rainfall and drought are changing and undermining food security which have major implications for human health, welfare and social infrastructure. These atmospheric changes follow an upward trend in anthropogenically induced CO2 and CH4. If  fossil-fuel emissions continue unstoppable, in less than 300 years pCO2 will reach a level not present on Earth for roughly 50 million years.

 

References:

Eleni Anagnostou, Eleanor H. John, Kirsty M. Edgar, Gavin L. Foster, Andy Ridgwell, Gordon N. Inglis, Richard D. Pancost, Daniel J. Lunt, Paul N. Pearson. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 2016; DOI: 10.1038/nature17423

Zachos, J. C., Dickens, G. R. &  Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279283(2008)

Loptson, C. A., Lunt, D. J. & Francis, J. E. Investigating vegetation-climate feedbacks during the early Eocene. Clim. Past 10, 419436 (2014)

Robin Y. Smith, David R. Greenwood, James F. Basinger; Estimating paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada; Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 293, Issues 1–2, 1 (2010).

Advertisements

The Pliocene Warm Period, an analogue of a future warmer Earth.

 

Tuktoyuktuk Beach on the Arctic Ocean (From Wikipedia)

Tuktoyuktuk Beach on the Arctic Ocean (From Wikipedia)

Microfossils from deep-sea are crucial elements for our understanding of past and present oceans. Their skeletons take up chemical signals from the sea water, in particular isotopes of oxygen and carbon. Over millions of years, these skeletons accumulate in the deep ocean to become a major component of biogenic deep-sea sediments. The incorporation of Mg/Ca into the calcite of marine organisms, like foraminifera, is widely used to reconstruct the thermal evolution of the oceans throughout the Cenozoic. Planktic foraminifer Globigerinoides ruber is perhaps one of the most widely used species for reconstructing past sea-surface conditions. Additionally, Mg/Ca–oxygen isotope measurements of benthic foraminifera may be related to global ice volume and by extension, sea level (Evans et al., 2016). The importance of microfossils as tool for paleoclimate reconstruction was recognized early in the history of oceanography. John Murray, naturalist of the CHALLENGER Expedition (1872-1876) found that differences in species composition of planktonic foraminifera from ocean sediments contains clues about the temperatures in which they lived.

Scanning Electron Micrographs of Globigerinoides ruber (adapted from Thirumalai et al., 2014)

Scanning Electron Micrographs of Globigerinoides ruber (adapted from Thirumalai et al., 2014)

The most recent investigations have focused on unravelling the Pliocene Warm Period, a period proposed as a possible model for future climate. The analysis of the evolution of the major ice sheets and the temperature of the oceans indicates that during the middle part of the Pliocene epoch (3.3 Ma–3 Ma), global warmth reached temperatures similar to those projected for the end of this century, about 2°–3°C warmer globally on average than today.

The mid-Pliocene is used as an analog to a future warmer climate because it’s geologically recent and therefore similar to today in many aspects like the land-sea configuration, ocean circulation, and faunal and flora distribution. Mid- Pliocene sediments containing fossil proxies of climate are abundant worldwide, and many mid- Pliocene species are extant, making faunal and floral paleotemperature proxies based on modern calibrations possible (Robinson et al., 2012).

Surface air temperature anomalies of (top) the late 21st century and (bottom) the mid-Pliocene (from Robinson et al., 2012)

Surface air temperature anomalies of (top) the late 21st century and (bottom) the mid-Pliocene (from Robinson et al., 2012)

Foraminiferal Mg/Ca data suggest that the Pliocene tropics were the same temperature or cooler than present. At high latitudes, mid- Pliocene sea surface temperatures (SSTs) were substantially warmer than modern SSTs. These warmer temperatures were reflected in the vegetation of Iceland, Greenland, and Antarctica. Coniferous forests replaced tundra in the high latitudes of the Northern Hemisphere. Additionally, the Arctic Ocean may have been seasonally free of sea-ice, and were large fluctuations in ice cover on Greenland and West Antarctica (Dolan et al., 2011; Lunt et al., 2012).  These results highlights the importance of the Pliocene Warm Period to better understand future warm climates and their impacts.

Reference:

David Evans, Chris Brierley, Maureen E. Raymo, Jonathan Erez, Wolfgang Müller; Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change; Earth and Planetary Science Letters, Volume 438, 15 March 2016, Pages 139-148

Jochen Knies, Patricia Cabedo-Sanz, Simon T. Belt, Soma Baranwal, Susanne Fietz, Antoni Rosell-Mel. The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications, 2014; 5: 5608 DOI: 10.1038/ncomms6608

Robinson, M.; Dowsett, H. J.; Chandler, M. A. (2008). “Pliocene role in assessing future climate impacts”; Eos 89 (49): 501–502.

Brief paleontological history of planktonic foraminifera.

neoglobo

Neogloboquadrina dutertrei. (Credit: Dr Kate Darling).

Planktonic foraminifera made their first appearance in the Late Triassic. Although, identifying the first occurrence of planktonic foraminifera is complex, with many suggested planktonic forms later being reinterpreted as benthic. They are present in different types of marine sediments, such as carbonates or limestones, and are excellent biostratigraphic markers.

Their test are made of  globular chambers composed of secrete calcite or aragonite, with no internal structures and  different patterns of chamber disposition: trochospiral, involute trochospiral and planispiral growth. During the Cenozoic, some forms exhibited supplementary apertures or areal apertures. The tests also show perforations and a variety of surface ornamentations like cones, short ridges or spines.

The phylogenetic evolution of planktonic foraminifera are closely associated with global and regional changes in climate and oceanography.

planktonic foraminifera evolution

The evolution of early planktonic foraminifera (From Boudagher-Fadel, 2013)

All species of Late Triassic and Jurassic planktonic foraminifera are members of the superfamily Favuselloidea. They present a test composed by aragonite, with microperforations, and sub-globular adult chambers. After the major End Triassic event, the Jurassic period saw warm tropical greenhouse conditions worldwide. The surviving planktonic foraminifera were usually dominated by small globular forms.

It was suggested  that a second transition from a benthic to a planktonic mode of life took place at the Jurassic, which occurred under conditions similar to those that triggered planktonic speciation in the Late Triassic (hot and dry global climate, and low sea levels).

During the Cretaceous,  the favusellids must have made the transition from being aragonitic to calcitic.  Also, in the Late Aptian there was a significant number of planktonic foraminiferal extinctions, but these were compensated by the establishment of a large number of new genera at the Aptian–Albian boundary.

Planktonic foraminifera from the Sargasso Sea in the North Atlantic Ocean. (Photograph courtesy Colomban de Vargas, EPPO/SBRoscoff.)

Planktonic foraminifera from the Sargasso Sea in the North Atlantic Ocean. (Photograph courtesy Colomban de Vargas, EPPO/SBRoscoff.)

The Paleogene assemblage of planktonic foraminifera was derived from the few species that survive the mass extinction event at the end of the Cretaceous.

In the Early Miocene, the planktonic foraminifera were most abundant and diverse in the tropics and subtropics, and after the Mid-Miocene Climatic Optimum, many species were adapted to populate temperate and sub-polar oceans.

During the Middle and Late Pliocene, the final closure of the Central American seaway, changed oceanic circulation and drove a significant number of species extinctions. Most modern, living species originated in the Pliocene and Pleistocene.

References:

Armstrong, H. A., Brasier, M. D., 2005. Microfossils (2nd Ed). Blackwell, Oxford.

Boudagher-Fadel, MK; (2013) Biostratigraphic and Geological Significance of Planktonic Foraminifera. (2nd ed.)