The Enigmatic Chilesaurus and the evolution of ornithischian dinosaurs

Chilesaurus diegosuarezi (MACN)

Chilesaurus diegosuarezi is a bizarre dinosaur from the Upper Jurassic of southern Chile. Holotype specimen (SNGM-1935) consists of a nearly complete, articulated skeleton, approximately 1.6 m long. Four other partial skeletons (specimens SNGM-1936, SNGM-1937, SNGM-1938, SNGM-1888) were collected in the lower beds of Toqui Formation. All the preserved specimens of Chilesaurus show ventrally flexed arms with the hands oriented backwards, an arrangement that closely resembles the resting posture similar described in Mei long, Sinornithoides youngi, and Albinykus baatar. 

Chilesaurus possesses a number of surprisingly plesiomorphic traits on the hindlimbs, especially in the ankle and foot, which resemble basal sauropodomorphs; but the pubis closely resembles that of basal ornithischians. The bizarre anatomy of Chilesaurus raises interesting questions about its phylogenetic relationships. The features supporting the basal position of Chilesaurus within Tetanurae are: scapular blade elongate and strap-like; distal carpal semilunate; and manual digit III reduced.

Chilesaurus holotype cast (MACN)

But the position of Chilesaurus within within Tetanurae conflicts with the presence of several highly derived coelurosaurian features (e.g., opisthopubic pelvis, large supratrochanteric process on ilium, reduced supracetabular crest) which are present in combination with a number of surprisingly plesiomorphic traits present in basal sauropodomorphs.

Ornithischian features of Chilesaurus (From Baron and Barret, 2017)

Chilesaurus also shows several characters typical of ornithischians. The features include a premaxilla with an edentulous anterior region;  loss of recurvature in maxillary and dentary teeth; a postacetabular process that is 25–35% of the total anteroposterior length of the ilium; possession of a retroverted pubis; a pubis with a rod-like pubic shaft; a pubic symphysis that is restricted to the distal end of the pubis; and a femur that is straightened in anterior view.

The unique combination of ‘primitive’ and ‘derived’ characters for Chilesaurus has the potential to illuminate the order in which traditional ornithischian synapomorphies were acquired. For instance, Chilesaurus lacks a predentary bone, one of the features previously regarded as a fundamental ornithischian feature, although it possesses a retroverted pubis, suggesting that opisthopuby preceded the evolution of some craniodental modifications. Opisthopuby has also been related to herbivory, as it has been suggested that pubic retroversion might be related to the evolution of a more complex, longer digestive tract (Baron and Barret, 2017).

References:

Baron MG, Barrett PM. 2017, A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs. Biol. Lett. 13: 20170220. http://dx.doi.org/10.1098/rsbl.2017.0220

Nicolás R. Chimento, Federico L. Agnolin, Fernando E. Novas, Martín D. Ezcurra, Leonardo Salgado, Marcelo P. Isasi, Manuel Suárez, Rita De La Cruz, David Rubilar-Rogers & Alexander O. Vargas (2017) Forelimb posture in Chilesaurus diegosuarezi (Dinosauria, Theropoda) and its behavioral and phylogenetic implications. Ameghiniana doi: 10.5710/AMGH.11.06.2017.3088

Novas, F.E., Salgado, L., Suarez, M., Agnolín, F.L., Ezcurra, M.D., Chimento, N.R., de la Cruz, R., Isasi, M.P., Vargas, A.O., and Rubilar-Rogers, D. 2015. An enigmatic plant-eating theropod from the Late Jurassic period of Chile. Nature 522: 331-334. doi:10.1038/nature14307

Re-examining the dinosaur evolutionary tree.

Close up of “Sue” at the Field Museum of Natural History in Chicago, IL (From Wikimedia Commons)

In the nineteen century, the famous Victorian anatomist Richard Owen diagnosed Dinosauria using three taxa: Megalosaurus, Iguanodon and Hylaeosaurus, on the basis of three main features: large size and terrestrial habits, upright posture and sacrum with five vertebrae (because the specimens were from all Late Jurassic and Cretaceous, he didn’t know that the first dinosaurs had three or fewer sacrals). Later, in 1887, Harry Govier Seeley summarised the works of Edward Drinker Cope, Thomas Huxley and Othniel Charles Marsh, and subdivide dinosaurs into Saurischians and the Ornithischians. He wrote: The characters on which these animals should be classified are, I submit, those which pervade the several parts of the skeleton, and exhibit some diversity among the associated animal types. The pelvis is perhaps more typical of these animals than any other part of the skeleton and should be a prime element in classification. The presence or absence of the pneumatic condition of the vertebrae is an important structural difference…” Based on these features, Seeley denied the monophyly of dinosaurs.

Seeley’s (1901) diagram of the relationships of Archosauria. From Padian 2013

At the mid 20th century, the consensual views about Dinosauria were: first, the group was not monophyletic; second almost no Triassic ornithischians were recognised, so they were considered derived morphologically, which leads to the third point, the problem of the ‘‘origin of dinosaurs’’ usually was reduced to the problem of the ‘‘origin of Saurischia,’’ because theropods were regarded as the most primitive saurischians. But the discovery of Lagosuchus and Lagerpeton from the Middle Triassic of Argentina induced a change in the views of dinosaurs origins. Also from South America came Herrerasaurus from the Ischigualasto Formation, the basal sauropodomorphs Saturnalia, Panphagia, Chromogisaurus, and the theropods Guibasaurus and Zupaysaurus, but no ornithischians except a possible heterodontosaurid jaw fragment from Patagonia. The 70s marked the beginning of a profound shift in thinking on nearly all aspects of dinosaur evolution, biology and ecology. Robert Bakker and Peter Galton, based on John Ostrom’s vision about Dinosauria, proposed, for perhaps the first time since 1842, that Dinosauria was indeed a monophyletic group and that it should be separated (along with birds) from other reptiles as a distinct ‘‘Class”. In 1986, the palaeontologist Jacques Gauthier showed that dinosaurs form a single group, which collectively has specific diagnostic traits that set them apart from all other animals.

The dinosaur evolutionary tree (From Padian, 2017.

Phylogenetic analyses of early dinosaurs have  supported the traditional scheme. But a new study authored by Matthew Baron, David Norman and Paul Barrett, reach different conclusions from those of previous studies by incorporating some different traits and reframing others. Baron and colleagues, analysed a wide range of dinosaurs and dinosauromorphs, including representatives of all known dinosauromorph clades. 74 taxa were scored for 457 characters. The team  arrived at a dinosaur evolutionary tree containing one main branch that subdivides into the groupings of Ornithischia and Theropoda, and a second main branch that contains the Sauropoda and Herrerasauridae (usually positioned as either basal theropods or basal Saurischia, or outside Dinosauria but close to it). The union between ornithischians and theropods is called Ornithoscelida. The term was coined in 1870 by Thomas Huxley for a group containing the historically recognized groupings of Compsognatha, Iguanodontidae, Megalosauridae and Scelidosauridae.

From Baron et al., 2017.

The synapomorphies that support the formation of the clade Ornithoscelida includes: an anterior premaxillary foramen located on the inside of the narial fossa; a sharp longitudinal ridge on the lateral surface of the maxilla; short and deep paroccipital processes; a post-temporal foramen enclosed within the paroccipital process; a straight femur, without a sigmoidal profile; absence of a medioventral acetabular flange; a straight femur, without a sigmoidal profile; and fusion of the distal tarsals to the proximal ends of the metatarsals.

Of course, those results have great implications for the very origin of dinosaurs. Ornithischia don’t begin to diversify substantially until the Early Jurassic. By contrast, the other dinosaurian groups already existed by at least the early Late Triassic. If the impoverished Triassic record of ornithischians reflects a true absence, ornithischians might have evolved from theropods in the Late Triassic (Padian, 2017). The study also suggest that dinosaurs might have originated in the Northern Hemisphere, because most of their basal members, as well as their close relatives, are found there. Furthermore, their analyses places the origin of dinosaurs at the boundary of the Olenekian and Anisian stages (around 247 Ma), slightly earlier than has been suggested previously.

 

References:

Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution.  Nature 543, 501–506  (2017).  doi:10.1038/nature21700

Padian K. Dividing the dinosaurs. Nature 543, 494–495 (2017) doi:10.1038/543494a

Padian K. The problem of dinosaur origins: integrating three approaches to the rise of Dinosauria. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Available on CJO 2013 doi:10.1017/S1755691013000431 (2013).

Seeley, H. G. On the classification of the fossil animals commonly named Dinosauria. Proc. R. Soc. Lond. 43, 165171 (1887).

Huxley, T. H. On the classification of the Dinosauria, with observations on the Dinosauria of the Trias. Quarterly Journal of the Geological Society, London 26, 32-51. (1870).