Sapeornis and the flight modes of birds

Sapeornis chaoyangensis (DNHM-3078) showing well-preserved primary (P) and secondary (S) feathers. From Serrano and Chiappe, 2017

Birds originated from a theropod lineage more than 150 million years ago. By the Early Cretaceous, they diversified, evolving into a number of groups of varying anatomy and ecology. Most of these fossils, like Sapeornis chaoyangensis (125 to 120 Ma), are from the Jehol Biota of northeastern China. Sapeornis shows a combination of derived and primitive features, like a short, robust non-strut-like coracoid and a fibula reaching the distal end of the tarsal joint, a pygostyle, reduced manual digits, and a well-fused carpometacarpus. All of these features indicates a mosaic pattern in the early evolution of birds and confirm the basal position of Sapeornis near Archaeopteryx and Jeholornis in the phylogeny of early birds.

The evolution of flight involved a series of adaptive changes at the morphological and molecular levels, that included the fusion and elimination of some bones and the pneumatization of the remaining ones. Archaeopteryx lacked a bony sternum and a compensatory specialized gastral basket for anchoring large flight muscles, while Jelohornis had several derived flight-related features of modern birds like fused sacral vertebrae, an elongated coracoid with a procoracoid process, a complex sternum, a narrow furcula, and curved scapula. In Enantiornithines, their robust pygostyle appears to have been unable to support the muscles that control the flight feathers on the tail in modern birds.

Morphofunctional fitness of the wing shape for soaring as depicted by the relation between the lift surface and the wingspan in modern soaring birds and Sapeornis (From Serrano and Chiappe, 2017)

The flight modes of modern birds are a reflection of their different strategies to reduce the energetic costs of a highly demanding style of locomotion. Among these features are wing shape, and the use of thermals and tail winds. Flapping flight is energetically more costly  than gliding and soaring flight, consequently, large birds have either elongated wingspans that allow them to gain height through air currents and to glide for long distances with much lower transit costs than flapping.

Fossil evidence suggests that S. chaoyangensis was a specialized flier that used continental soaring as its main flight mode. Computational models of S. chaoyangensis are also congruent with other morphological similarities between S. chaoyangensis and modern soaring birds including the shape of the furcula and the proportions of the forelimbs. Modern soaring birds include dynamic soarers that exploit air velocity gradients over sea waves, and thermal soarers that use ascending air currents mainly generated in continental areas. Because, exceptionally well preserved fossils of S. chaoyangensis have revealed seeds and/or fruits in its intestinal tract, this interpretation of the flight capabilities of S. chaoyangensis is consistent with the energetic disadvantages from a herbivorous diet, because soaring is a less demanding flight mode than continuous flapping.

References:

Serrano FJ, Chiappe LM. 2017 Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. J. R. Soc. Interface 14: 20170182. http://dx.doi.org/10.1098/rsif.2017.0182

Butler PJ. 2016 The physiological basis of bird flight. Phil. Trans. R. Soc. B 371, 20150384 doi:10. 1098/rstb.2015.0384

Zhou, Zhonghe & Zhang, Fucheng (2003): Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Canadian Journal of Earth Sciences 40(5): 731–747. doi 10.1139/E03-011

Molecular signatures of fossil leaves

Leaves of Ptilophyllum mueller, from Emmaville, New South Wales. Scale bars=10 mm (From McLoughlin et al., 2011)

The first plants colonized land approximately 450 million years ago. The transition from an exclusively aquatic to a terrestrial life style implied the evolution of a new set of morphological and physiological features. The most critical adaptive trait for survival during terrestrialization was the ability to retain water in increasingly dehydrating habitats. Consequently, the capacity to maintain a hydrophobic surface layer, or cuticle, over the surfaces of aerial organs was arguably one of the most important innovations in the history of plant evolution.

Spores, pollen and leaf cuticles, are among the most resilient organic structures in the geological record. These components may retain some phylogenetically unique signals, not only in well-preserved fossils, but also in remains with a high level of diagenetic maturity.

Ginkgo biloba, Eocene fossil leaf from the Tranquille Shale of MacAbee, British Columbia, Canada (From Wikipedia Commons)

Generally, the cuticle is divided into two major structural constituents: cutin and cutan. The fatty acid polyesters which constitute cutin, gives the cuticle considerable resistance to biodegradation. Cutan is a non-ester and non-hydrolyzable matrix of aliphatic compounds linked by ether bonds, which remain after cutin hydrolysis. Additionally, the surface of the cuticle may be covered by various long-chain hydrophobic waxes. All these components  favours the survival of the cuticle in many fossil plants, and can be used to resolve the stratigraphic ranges and relationships of extinct plants.

Data from infrared spectroscopy of modern plant cuticles, have been used successfully to support and clarify the species-level taxonomy of extant plants, for example, in Camellia and angiosperm pollen. Using infrared spectroscopy and statistical analysis, researchers at Lund University, the Swedish Museum of Natural History in Stockholm, and Vilnius University, analysed a selection of fossil Cycadales, Ginkgoales and conifers. The team obtained two major groups in the dendrogram of infrared spectra. One branch unites podocarpacean and araucariacean conifers (excluding the Jurassic Allocladus). A relationship consistent with all modern phylogenetic analyses of gymnosperm. The second branch unites a broad range of gymnosperms. Within this branch, Bennettitales (Otozamites and Pterophyllum) form a well-defined group in association with Ptilozamites and Nilssoniales. This cluster is linked to a group incorporating Cycadales on one sub-branch, and Leptostrobales, Ginkgoales and the putative araucariacean Jurassic conifer Allocladus on a second sub-branch.

 

Dendrogram based on HCA of infrared absorption spectra of an expanded group of 13 fossil gymnosperm taxa (From Vajda et al., 2017)

Early palaeobotanical studies generally linked Bennettitales to Cycadales, but more recent anatomical studies and cladistic analyses have indicated that Bennettitales are not closely related to Cycadales. By contrast, Bennettitales, Nilssoniales and Ptilozamites are grouped closely. Additionally,  the systematic position of Allocladus within Araucariaceae should be reassessed based on its close association with Ginkgo in the cluster analysis of infrared spectra.

References:

Vivi Vajda, Milda Pucetaite, Stephen McLoughlin, Anders Engdahl, Jimmy Heimdal, Per Uvdal. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nature Ecology & Evolution, 2017; DOI: 10.1038/s41559-017-0224-5

Stephen McLoughlinRaymond J. Carpenter, and Christian Pott, Ptilophyllum muelleri (Ettingsh.) comb. nov. from the Oligocene of Australia: Last of the Bennettitales?, International Journal of Plant Sciences 2011 172:4574-585, DOI: 10.1086/658920

Forelimb posture in Chilesaurus diegosuarezi.

 

Chilesaurus holotype cast (MACN. From Wikipedia Commons. Author: Evelyn D’Esposito)

Chilesaurus diegosuarezi is a bizarre tetanuran from the Upper Jurassic of southern Chile. Holotype specimen (SNGM-1935) consists of a nearly complete, articulated skeleton, approximately 1.6 m long. Four other partial skeletons (specimens SNGM-1936, SNGM-1937, SNGM-1938, SNGM-1888) were collected in the lower beds of Toqui Formation. For a basal tetanuran, Chilesaurus possesses a number of surprisingly plesiomorphic traits on the hindlimbs, especially in the ankle and foot, which resemble basal sauropodomorphs.

All the preserved specimens of Chilesaurus show ventrally flexed arms with the hands oriented backwards, an arrangement that closely resembles the resting posture similar described in Mei long, Sinornithoides youngi, and Albinykus baatar. However, the hindlimbs of Chilesaurus are posteriorly extended, rather than ventrally flexed. So it seems that individuals of Chilesaurus were buried quickly and fossilized almost in life position during passive activity (e.g. feeding, resting).

Cast of SNGM-1937 specimen of Chilesaurus diegosuarezi in dorsal (1), 471 lateral (2), and anterolateral view (3).

Cast of SNGM-1937 specimen of Chilesaurus diegosuarezi in dorsal (1), 471 lateral (2), and anterolateral view (3). Scale: 20 mm.

The specimen SNGM-1937 shows an angular relation in the wrist that resembles that in Deinonychus. In fact, several coelurosaurs have the same resting position as the forelimbs of Chilesaurus, with the humerus and radius-ulna in perpendicular relation or elbow flexed in an acute angle, hands under the radius-ulna, and palmar surface posterodorsal and dorsomedial oriented with respect to the main body axis. The resting posture of the forelimbs has been studied in theropod species, in relation to the acquisition of flight. It was suggested that the presence of the forelimb folded structure in advanced theropods are related with soft structures, as patagial skin and muscles, present in several maniraptoran dinosaurs.

The cojoined flexion of wrist and elbow in living birds is mainly conducted by the action of a large number of tendons located within the propatagium. Although the existence of propatagium was considered as unique to modern birds, it have also been described for coelurosaurs and Pterosauria. The preserve of a flexed forearm in Chilesaurus, may be also regarded as an indirect indicative of the presence of propatagium in this taxon.

 

References:

Nicolás R. Chimento, Federico L. Agnolin, Fernando E. Novas, Martín D. Ezcurra, Leonardo Salgado, Marcelo P. Isasi, Manuel Suárez, Rita De La Cruz, David Rubilar-Rogers & Alexander O. Vargas (2017) Forelimb posture in Chilesaurus diegosuarezi (Dinosauria, Theropoda) and its behavioral and phylogenetic implications. Ameghiniana (advance online publication) doi: 10.5710/AMGH.11.06.2017.3088

Novas, F.E., Salgado, L., Suarez, M., Agnolín, F.L., Ezcurra, M.D., Chimento, N.R., de la Cruz, R., Isasi, M.P., Vargas, A.O., and Rubilar-Rogers, D. 2015. An enigmatic plant-eating theropod from the Late Jurassic period of Chile. Nature 522: 331-334. doi:10.1038/nature14307

 

A mid-Cretaceous enantiornithine frozen in time

Overview of HPG-15-1 in right lateral view. (From Xing et al., 2017)

Overview of HPG-15-1 in right lateral view. (From Xing et al., 2017)

Amber from the Hukawng Valley in northern Myanmar, called Burmese amber, has been commercially exploited for millennia. Of the seven major deposits of amber from the Cretaceous Period, Burmese amber has probably the most diverse paleobiota, including the tail of a non-avian coelurosaurian theropod, and three juvenile enantiornithine birds. The third specimen, HPG-15-1, is the most complete fossil bird discovered in Burmese amber. It comes from the Angbamo site, and measures approximately 86 mm x 30 mm x 57 mm, and weighs 78 g. It  was encapsulated during the earliest stages of its feather production, and  plumage preserves an unusual combination of precocial and altricial features unlike any living hatchling bird.

 Details of the head in HPG-15-1. A, x-ray µCT reconstruction in left lateral view

Details of the head in HPG-15-1. A, x-ray µCT reconstruction in left lateral view (From Xing et al., 2017)

The skull was split when the amber was cut. The rostrum is preserved in one section and the neck and most of the braincase in the other. The skull is mesorostrine. A  single tooth is visible in the left premaxilla. As in Early Cretaceous enantiornithines, the premaxillary corpus is short, forming approximately one-third of the rostrum. The exoccipitals contributed to the dorsal portion of the condyle and were unfused at the time of death. The frontals articulate for most of their length with a small gap between their rostral ends as in Archaeopteryx.  The inner ear and its semicircular canals are preserved. There are at least six articulated cervical vertebrae, including the atlas and axis, preserved in articulation with the skull. The post-axial vertebrae are rectangular with large neural canals, low and caudally displaced neural spines, and a ventral keel as in many enantiornithines. The articulated skull and series of cervical vertebrae bear plumage in dense fields. The individual feathers  are dark brown in color, and appear to consist of tufts of four or more barbs. Skin is preserved as a translucent film in unfeathered regions of both the head and neck.

Microstructure and pigmentation of feathers on wing and body of HPG-15-1. Scale bars equal 1 mm in (A, C); 0.5 mm in (B, D). From Xing et al., 2017

The new specimen also preserves a partial distal wing, the distal right tibiotarsus and complete right foot as well as part of the left pes. Both skeletal material and integumentary structures from the wing’s apex are well-preserved. The plumage consists of fragments of some of the primaries, and alula feathers, some of the secondaries and coverts, and traces of contours from the wing base. The hind limbs preserve feathers and traces of skin. The absence of fusion between the tarsals indicates that the specimen is ontogenetically immature. The proportions of the pedal digits suggest an arboreal lifestyle. Plumage within the femoral and crural tracts consists of neoptile feathers with a short or absent rachis. These feathers are nearly transparent, suggesting that they were pale or white. The skin beneath the crural tract is thin and smooth. The tip of the tail clearly preserves the remains of a single large sheathed rectrix.

The slow post-natal growth results in a protracted period of vulnerability, which is reflected in the Enantiornithes by the large number of juveniles found in the fossil record, whereas young juveniles of other Cretaceous bird lineages are unknown.

 

References:

Lida Xing, Jingmai K. O’Connor, Ryan C. McKellar, Luis M. Chiappe, Kuowei Tseng, Gang Li, Ming Bai , A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage, (2017), doi: 10.1016/j.gr.2017.06.001

The American incognitum and the History of Extinction Studies

 

Georges Cuvier (1769 -1832) and the painting of Charles Wilson Peale’s reconstruction of the American incognitum

Extinction is the ultimate fate of all species. More than 95% of all species that ever lived are now extinct. But prior to the 18th century, the idea that species could become extinct was not accepted. However, as the new science of paleontology began bringing its first major discoveries to light, researchers began to wonder if the large vertebrate fossils of strange creatures unearthed by the Enlightenment explorers were indeed the remains of extinct species.

In 1739, French soldiers under the command of Baron Charles le Moyne de Lougueuil recovered a tusk, femur, and three curious molar teeth from Big Bone Lick, Kentucky, a place known in several American Indian narratives. Lougueuil sent these specimens to the Cabinet du Roi (Royal Cabinet of Curiosities) in Paris. In 1762, Louis Jean-Marie Daubenton, a zoologist at the Jardin du Roi concluded that the femur and tusk from the Longueuil’s collection were those of a large elephant, the “Siberian Mammoth,” but the three molars came from a gigantic hippopotamus.

Molar collected at Big Bone Lick in 1739 and described in Paris in 1756. (Georges Cuvier, Recherches sur les ossemens fossiles)

By the early 18 century it was inconceivable for many researchers that a species could be vanished. Naturalist Georges-Louis Leclerc de Buffon, wrote in 1749 about the extinction of marine invertebrates, but he adopted Daubenton’s view that the Siberian mammoth and the animal of the Ohio, known as the American incognitum, were both northern forms of the extant elephant rather than a vanished species. British anatomist William Hunter was the first to speculate that these remains might be from an extinct species. In 1799, the discovery of an American incognitum femur from Quaternary deposits in the Hudson River Valley led to excavations organized by Charles Wilson Peale. In 1801, the excavations resulted in the recovery of an almost complete skeleton. Peale reconstructed the skeleton with help from the American anatomist Caspar Wistar, and the displayed the mounted skeleton in public in December of that year.

In 1806 Georges Cuvier resolved the controversy about the  American incognitum demonstrating that both the Siberian mammoth and the “animal de l’Ohio” were elephants, but of different species. He described the Ohio elephant as a mastodon and he reached the conclusion that probably represented an extinct species. Cuvier was also the first to suggested that periodic “revolutions” or catastrophes had befallen the Earth and wiped out a number of species. But, under the influence of Lyell’s uniformitarianism, Cuvier’s ideas were rejected as “poor science”. The modern study of mass extinction did not begin until the middle of the twentieth century. One of the most popular of that time was “Revolutions in the history of life” written by Norman Newell in 1967.

 

References:

Macleod, N. The geological extinction record: History, data, biases, and testing. Geol. Soc. Am. Spec. Pap. 505, (2014), DOI: 10.1130/2014.2505(01)​

Marshall, Charles R., Five palaeobiological laws needed to understand the evolution of the living biota, Nature Ecology & Evolution 1, 0165 (2017), DOI: 10.1038/s41559-017-0165 .

Zuul, the Gatekeeper

Skull of Zuul (Photograph: Brian Boyle/Royal Ontario Museum)

The Ankylosauria is a group of herbivorous, quadrupedal, armoured dinosaurs subdivided in two major clades, the Ankylosauridae and the Nodosauridae. Zuul crurivastator, from the Coal Ridge Member of the Judith River Formation of northern Montana, is the most complete ankylosaurid ever found in North America. The generic name refers to Zuul the Gatekeeper of Gozer (from the 1984 film Ghostbusters), and the species epithet combines crus (Latin) for shin or shank, and vastator (Latin) for destroyer, in reference to the sledgehammer-like tail club. The extraordinary preservation of abundant soft tissue in the skeleton, including in situ osteoderms and skin impressions make this specimen an important reference for understanding the evolution of dermal and epidermal structures in this clade. Until the discovery of Zuul, Laramidian ankylosaurin specimens were primarily assigned to three taxa: Euoplocephalus tutus and Ankylosaurus magniventris from northern Laramidia, and Nodocephalosaurus kirtlandensis from southern Laramidia.

The holotype (ROM 75860)  is a partial skeleton consisting of a nearly complete cranium, and a partially articulated postcranium. It is estimated to be over 6 metres long, and it would have weighed approximately 2500 kg. It has been dated to approximately 75 million years ago, and it was discovered accidentally on 16 May 2014 during overburden removal for a scattered tyrannosaurid skeleton, when a skid-steer loader encountered the tail club knob.

Overview of the tail of Zuul crurivastator in dorsal view, with insets of detailed anatomy (From Arbour and Evans, 2017)

The skull is almost complete, missing only the tip of the right quadratojugal horn and the ventral edge of the vomers, and is the largest ankylosaurine skull recovered from Laramidia. The skull is relatively flat dorsally, and had an elaborate ornamentation across the snout. The squamosal horns are robust and pyramid-shaped, and the quadratojugal horns had a sharp, posteriorly offset apex.

The tail club (including the 13 caudal vertebrae in the handle and the knob) is at least 210 cm long. Osteoderms are preserved not only in the anterior, flexible portion of the tail but also along the tail club handle. The first three pairs of caudal osteoderms are covered with a black film, that probably represent preserved keratin, and is similar to the texture observed at the base of bovid horn sheaths.

The discovery of Zuul fills a gap in the ankylosaurine record and further highlights that Laramidian ankylosaurines were undergoing rapid evolutionary rates and stratigraphic turnover as observed for Laramidian ceratopsids, hadrosaurids, pachycephalosaurids and tyrannosaurids.

References:

Arbour V. M., Evans D. C., (2017), A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation , Royal Society Open Science, rsos.royalsocietypublishing.org/lookup/doi/10.1098/rsos.161086

Arbour, V. M.; Currie, P. J. (2015). “Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs”. Journal of Systematic Palaeontology: 1–60. doi: 10.1080/14772019.2015.1059985

Jianianhualong and the evolution of feathers.

Jianianhualong tengi holotype (From Xu, X. et al., 2017)

In recent years, several discovered fossils of theropods and early birds have filled the morphological, functional, and temporal gaps along the line to modern birds. Most of these fossils are from the Jehol Biota of northeastern China, dated between approximately 130.7 and 120 million years ago. Among them are many fossils of troodontids, which are considered as the closest relatives of birds. Previous reported troodontid species include Mei long, Sinovenator changii, Sinusonasus magnodens and Jinfengopteryx elegans. Now a new troodontid, Jianianhualong tengi gen. et sp. nov., has anatomical features that shed light on troodontid character evolution.

The holotype (DLXH 1218) is a nearly complete skeleton with associated feathers, and is inferred to be an adult. It is estimated to be 112 cm in total skeletal body length with a fully reconstructed tail, and its body mass is estimated to be 2.4 kg, similar to most other Jehol troodontids, such as Sinovenator. The skull and mandible are in general well preserved, and  has a relatively short snout and highly expanded skull roof. There are probably 21 maxillary teeth and 25 dentary teeth on each side of the jaw. The vertebral column is nearly completely represented and  the tail is 54 cm long. The furcula is poorly preserved, and the humerus is 70% of femoral length. The manus is typical of maniraptoran theropods, and measures 112 mm in length. The pelvis is in general similar to those of basal troodontids, with a proportionally small ilium, a posteroventrally oriented pubis, and a short ischium. A phylogenetic analysis places Jianianhualong in an intermediate position together with several species between the basalmost and derived troodontids.

Plumage of Jianianhualong tengi (Adapted from Xu, X.  et al, 2017)

The tail frond of Jianianhualong preserves an asymmetrical feather, the first example of feather asymmetry in troodontids. Feathers were once considered to be unique avialan structures. Since the discovery of the feathered Sinosauropteryx in 1996, numerous specimens of most theropod groups and even three ornithischian groups preserving feathers have been recovered from the Jurassic and Cretaceous beds of China, Russia, Germany, and Canada. These feathers fall into several major morphotypes, ranging from monofilamentous feathers to highly complex flight feathers.

Evidence indicates that the earliest feathers evolved in non-flying dinosaurs for display or thermoregulation, and later were co-opted into flight structures with the evolution of asymmetrical pennaceous feathers in Paraves, therefore, the discovery of tail feathers with asymmetrical vanes in a troodontid theropod indicates that feather asymmetry was ancestral to Paraves.

 

 

References:

Xu, X. et al. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat. Commun. 8, 14972 doi: 10.1038/ncomms14972 (2017).

Xu, X. et al. An integrative approach to understanding bird origins, Science, Vol. 346 no. 6215 (2014). DOI: 10.1126/science.1253293

Introducing Zhongjianosaurus.

 

Photograph of Zhongjianosaurus yangi holotype (From Xu & Qin, 2017).

Dromaeosaurids are a group of carnivorous theropods, popularly known as “raptors”. Most of them were small animals, ranging from about 0.7 metres in length to over 7 metres. They had a relatively large skull with a narrow snout and the forward-facing eyes typical of a predator. They also had serrated teeth, and their arms were long with large hands, a semi-lunate carpal, with three long fingers that ended in big claws. The earliest known representatives are from the Lower Cretaceous Jehol Group of western Liaoning, China. The most recent described dromaeosaurid is Zhongjianosaurus yangi. The new taxon was named in honor of  Yang Zhongjian, who is the founder of vertebrate paleontology in China.

The Early Cretaceous Jehol dromaeosaurids not only display a great size disparity, but also show a continuous size spectrum. Zhongjianosaurus represents the ninth dromaeosaurid species reported from the Jehol Biota. It was first reported in 2009, and is notable for its small size (about 25 cm tall), compact body, and extremely long legs.

Zhongjianosaurus yangi holotype. A. right scapulocoracoid in lateral view and furcula in posterior view; B. right humerus in anterior view; C. left ulna and radius in lateral view; D. ‘semilunate’ carpal, metacarpals II and III in ventral view and phalanges II-1 and -2 in lateral view; scale bars equal 5 mm (From Xu & Qin, 2017)

The holotype is an adult individual distinguishable from other microraptorines in possessing many unique features, most of them are present in the forelimbs. For example, the humerus has a strongly offset humeral head, a large fenestra near the proximal end, and a large ball-like ulnar condyle. Zhongjianosaurus also displays several other features which are absent in other Jehol dromaeosaurids. For instance, the uncinate processes are proportionally long and fused to the dorsal ribs, the caudal vertebral transitional point is located anteriorly, and the pes exhibits a full arctometatarsalian condition.

The coexistence of several closely related Jehol dromaeosaurids can be interpreted as niche differentiation. Tianyuraptor have limb proportions and dental morphologies typical of non-avialan carnivorous theropods, suggesting that they were ground-living cursorial predators, meanwhile Microraptor are more likely to have been arboreal or even gliding animals.

References:

Xu X , Qin Z C, 2017, in press. A new tiny dromaeosaurid dinosaur from the Lower Cretaceous Jehol Group of western Liaoning and niche differentiation among the Jehol dromaeosaurids. Vertebrata PalAsiatica

Xu X, 2002. Deinonychosaurian fossils from the Jehol Group of western Liaoning and the coelurosaurian evolution. Ph.D thesis, Beijing: Chinese Academy of Sciences. 1–322

Re-examining the dinosaur evolutionary tree.

Close up of “Sue” at the Field Museum of Natural History in Chicago, IL (From Wikimedia Commons)

In the nineteen century, the famous Victorian anatomist Richard Owen diagnosed Dinosauria using three taxa: Megalosaurus, Iguanodon and Hylaeosaurus, on the basis of three main features: large size and terrestrial habits, upright posture and sacrum with five vertebrae (because the specimens were from all Late Jurassic and Cretaceous, he didn’t know that the first dinosaurs had three or fewer sacrals). Later, in 1887, Harry Govier Seeley summarised the works of Edward Drinker Cope, Thomas Huxley and Othniel Charles Marsh, and subdivide dinosaurs into Saurischians and the Ornithischians. He wrote: The characters on which these animals should be classified are, I submit, those which pervade the several parts of the skeleton, and exhibit some diversity among the associated animal types. The pelvis is perhaps more typical of these animals than any other part of the skeleton and should be a prime element in classification. The presence or absence of the pneumatic condition of the vertebrae is an important structural difference…” Based on these features, Seeley denied the monophyly of dinosaurs.

Seeley’s (1901) diagram of the relationships of Archosauria. From Padian 2013

At the mid 20th century, the consensual views about Dinosauria were: first, the group was not monophyletic; second almost no Triassic ornithischians were recognised, so they were considered derived morphologically, which leads to the third point, the problem of the ‘‘origin of dinosaurs’’ usually was reduced to the problem of the ‘‘origin of Saurischia,’’ because theropods were regarded as the most primitive saurischians. But the discovery of Lagosuchus and Lagerpeton from the Middle Triassic of Argentina induced a change in the views of dinosaurs origins. Also from South America came Herrerasaurus from the Ischigualasto Formation, the basal sauropodomorphs Saturnalia, Panphagia, Chromogisaurus, and the theropods Guibasaurus and Zupaysaurus, but no ornithischians except a possible heterodontosaurid jaw fragment from Patagonia. The 70s marked the beginning of a profound shift in thinking on nearly all aspects of dinosaur evolution, biology and ecology. Robert Bakker and Peter Galton, based on John Ostrom’s vision about Dinosauria, proposed, for perhaps the first time since 1842, that Dinosauria was indeed a monophyletic group and that it should be separated (along with birds) from other reptiles as a distinct ‘‘Class”. In 1986, the palaeontologist Jacques Gauthier showed that dinosaurs form a single group, which collectively has specific diagnostic traits that set them apart from all other animals.

The dinosaur evolutionary tree (From Padian, 2017.

Phylogenetic analyses of early dinosaurs have  supported the traditional scheme. But a new study authored by Matthew Baron, David Norman and Paul Barrett, reach different conclusions from those of previous studies by incorporating some different traits and reframing others. Baron and colleagues, analysed a wide range of dinosaurs and dinosauromorphs, including representatives of all known dinosauromorph clades. 74 taxa were scored for 457 characters. The team  arrived at a dinosaur evolutionary tree containing one main branch that subdivides into the groupings of Ornithischia and Theropoda, and a second main branch that contains the Sauropoda and Herrerasauridae (usually positioned as either basal theropods or basal Saurischia, or outside Dinosauria but close to it). The union between ornithischians and theropods is called Ornithoscelida. The term was coined in 1870 by Thomas Huxley for a group containing the historically recognized groupings of Compsognatha, Iguanodontidae, Megalosauridae and Scelidosauridae.

From Baron et al., 2017.

The synapomorphies that support the formation of the clade Ornithoscelida includes: an anterior premaxillary foramen located on the inside of the narial fossa; a sharp longitudinal ridge on the lateral surface of the maxilla; short and deep paroccipital processes; a post-temporal foramen enclosed within the paroccipital process; a straight femur, without a sigmoidal profile; absence of a medioventral acetabular flange; a straight femur, without a sigmoidal profile; and fusion of the distal tarsals to the proximal ends of the metatarsals.

Of course, those results have great implications for the very origin of dinosaurs. Ornithischia don’t begin to diversify substantially until the Early Jurassic. By contrast, the other dinosaurian groups already existed by at least the early Late Triassic. If the impoverished Triassic record of ornithischians reflects a true absence, ornithischians might have evolved from theropods in the Late Triassic (Padian, 2017). The study also suggest that dinosaurs might have originated in the Northern Hemisphere, because most of their basal members, as well as their close relatives, are found there. Furthermore, their analyses places the origin of dinosaurs at the boundary of the Olenekian and Anisian stages (around 247 Ma), slightly earlier than has been suggested previously.

 

References:

Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution.  Nature 543, 501–506  (2017).  doi:10.1038/nature21700

Padian K. Dividing the dinosaurs. Nature 543, 494–495 (2017) doi:10.1038/543494a

Padian K. The problem of dinosaur origins: integrating three approaches to the rise of Dinosauria. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Available on CJO 2013 doi:10.1017/S1755691013000431 (2013).

Seeley, H. G. On the classification of the fossil animals commonly named Dinosauria. Proc. R. Soc. Lond. 43, 165171 (1887).

Huxley, T. H. On the classification of the Dinosauria, with observations on the Dinosauria of the Trias. Quarterly Journal of the Geological Society, London 26, 32-51. (1870).

 

Mary Anning and the Hunt of Primeval Monsters.

mary_anning_plesiosaurus

Autograph letter concerning the discovery of plesiosaurus, from Mary Anning (From Wikimedia Commons)

Since the End of the 17th century to the beginning of the 19th, several discoveries of dinosaur remains and other large extinct ‘saurians’, were reported for first time. It was an exciting time full of discoveries and the concept of an ancient Earth became part of the public understanding. The most popular aspect of geology was  the collecting of fossils and minerals and the nineteenth-century geology, often perceived as the sport of gentlemen, was in fact, “reliant on all classes”.

The study of the Earth became central to the economic and cultural life of the Victorian Society and Literature influenced the pervasiveness of geological thinking. The Geological Society of London was founded on 13 October 1807 at the Freemasons’ Tavern, in the Covent Garden district of London, with the stated purpose of “…making geologists acquainted with each other, of stimulating their zeal, of inducing them to adopt one nomenclature, of facilitating the communications of new facts and of ascertaining what is known in their science and what remains to be discovered”. During this time, women were free to take part in collecting fossils and mineral specimens, and they were allowed to attend lectures but they were barred from membership in scientific societies. However, it was common for male scientists to have women assistants, often their own wives and daughters.

Plesiosaurus battling Temnodontosaurus (Oligostinus), front piece the Book of the Great Sea-Dragons by Thomas Hawkins.

Plesiosaurus battling Temnodontosaurus (Oligostinus), front piece the Book of the Great Sea-Dragons by Thomas Hawkins.

Mary Anning (1799-1847), was an special case. Despite her lower social condition, Mary became the most famous ‘fossilist’ of her time. She was born on Lyme Regis on May 21, 1799. Her father was a carpenter and an amateur fossil collector who died when Mary was eleven. He trained Mary and her brother Joseph in how to look and clean fossils. After the death of her father, Mary and Joseph used those skills to search fossils on the local cliffs,  that sold as “curiosities”. The source of the fossils was the coastal cliffs around Lyme Regis, one of the richest fossil locations in England and part of a geological formation known as the Blue Lias. The age of the formation corresponds to the Jurassic period. In 1811, she caught the public’s attention when she and her brother Joseph unearthed the skeleton of a ‘primeval monster’. They sold it for £23. Later, in 1819, the skeleton was purchased by Charles Koenig of the British Museum of London who suggested the name “Ichthyosaur” for the fossil.

On December 10, 1823, she discovered the first complete Plesiosaur skeleton at Lyme Regis in Dorset. The fossil was acquired by the Duke of Buckingham. Noticed about the discovery, George Cuvier wrote to William Conybeare suggesting that the find was a fake produced by combining fossil bones from different animals. William Buckland and Conybeare sent a letter to Cuvier including anatomical details, an engraving of the specimen and a sketch made by Mary Morland (Buckland’s wife) based on Mary Anning’s own drawings and they convinced Cuvier that this specimen was a genuine find. From that moment, Cuvier treated Mary Anning as a legitimate and respectable fossil collector and cited her name in his publications.

The holotype specimen of Dimorphodon macronyx found by Mary Anning in 1828 (From Wikimedia Commons)

On December of 1828, Mary found the first pterosaur skeleton outside Germany. William Buckland made the announcement of Mary’s discovery in the Geological Society of London and named Pterodactylus macronyx in allusion to its large claws. The skull of Anning’s specimen had not been discovered, but Buckland thought that the fragment of jaw in the collection of the Philpot sisters of Lyme belonged to a pterosaur.

In her later years, Mary Anning suffered some serious financial problems. She died of breast cancer on 9 March, 1847, at the age of 47. She was buried in the cemetery of St. Michaels. In the last decade of her life, Mary received  three accolades. The first was an annuity of £25, in return for her many contributions to the science of geology. The second was in 1846, when the geologists of the Geological Society of London organized a further subscription for her. The third accolade was her election, in July 1846, as the first Honorary Member of the new Dorset County Museum in Dorchester (Torrens, 1995). After her death, Henry de la Beche, Director of the Geological Survey and President of the Geological Society of London, wrote a very affectionate obituary published in the Quarterly Journal of the Geological Society on February 14, 1848, the only case of a non Fellow who received that honour.

References:

Davis, Larry E. (2012) “Mary Anning: Princess of Palaeontology and Geological Lioness,”The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 8.

Hugh Torrens, Mary Anning (1799-1847) of Lyme; ‘The Greatest Fossilist the World Ever Knew’, The British Journal for the History of Science Vol. 28, No. 3 (Sep., 1995), pp. 257-284. Published by: Cambridge University Press.

De la Beche, H., 1848a. Obituary notices. Quarterly Journal of the Geological Society of London, v. 4: xxiv–xxv.

Dickens, C., 1865. Mary Anning, the fossil finder. All the Year Round, 13 (Feb 11): 60–63.