Mammalian dwarfing during ancient greenhouse warming events.

Bighorn Basin, Wyoming (Image: University of New Hampshire, College of Engineering and Physical Sciences)

The Paleocene-Eocene Thermal Maximum, known as PETM (approximately 55.8 million years ago), was a short-lived (~ 200,000 years) global warming event due to a rapid rise in the concentration of greenhouse gases in the atmosphere. It was suggested that this warming was initiated by the melting of methane hydrates on the seafloor and permafrost at high latitudes. This event was accompanied by other large-scale changes in the climate system, for example, the patterns of atmospheric circulation, vapor transport, precipitation, intermediate and deep-sea circulation, a rise in global sea level and ocean acidification.

The second largest hyperthermal of the early Eocene, known as ETM2, occurred about 2 million years after the PETM (approximately 53.7 Ma). Another smaller-amplitude hyperthermal, identified as “H2,” appears in the marine record about 100,000 years after ETM2 (approximately 53.6 Ma).

Sifrhippus sp. restoration in the Naturhistoriska Riksmuseet, Stockholm, Sweden (From Wikimedia Commons)

Dwarfing of mammalian taxa across the Palaeocene-Eocene Thermal Maximum (PETM) was first described in the Bighorn Basin, Wyoming. The basin has a remarkably fossil-rich sedimentary record of late Palaeocene to early Eocene age. The interval of the Paleocene–Eocene Thermal Maximum is represented by a unique mammalian fauna composed by smaller, but morphologically similar species to those found later in the Eocene. Diminutive species include the early equid Sifrhippus sandrae, the phenacodontids Ectocion parvus and Copecion davisi. 

Fossils of early equids are common in lower Eocene deposits of the Bighorn Basin, making a comparison between the PETM and ETM2 hyperthermal events possible. Using tooth size as a proxy for body size, researchers found a statistically significant decrease in the body size of mammals’ during the PETM and ETM2. Teeth in adult mammals scale proportionally to body size. For instance, Sifrhippus demonstrated a decrease of at least 30% in body size during the first 130,000 years of the PETM, followed by a 76% rebound in body size during the recovery phase of the PETM. Arenahippus, an early horse the size of a small dog, decreased by about 14 percent in size during the ETM2. (D’Ambrosia et al., 2017)

Arenahippus jaw fragment (Image credit: University of New Hampshire)

Body size change during periods of climate change is commonly seen throughout historical and geological records. Studies of modern animal populations have also yielded similar body size results. Tropical trees, anurans and mammals have all demonstrated decreased size or growth rate during drought years. In the case of mammals, the observed decrease in the average body size could have been an evolutionary response to create a more efficient way to reduce body heat.

The combination of global warming and the release of large amounts of carbon to the ocean-atmosphere system during the PETM has encouraged analogies with the modern anthropogenic climate change, which has already led to significant shifts in the distribution, phenology and behaviour of organisms. Plus, the consequences of shrinkage are not yet fully understood. This underlines the urgency for immediate action on global carbon emission reductions.

 

 

References:

Abigail R. D’Ambrosia, William C. Clyde, Henry C. Fricke, Philip D. Gingerich, Hemmo A. Abels. Repetitive mammalian dwarfing during ancient greenhouse warming events. Science Advances, 2017; 3 (3): e1601430 DOI: 10.1126/sciadv.1601430

Rankin, B., Fox, J., Barron-Ortiz, C., Chew, A., Holroyd, P., Ludtke, J., Yang, X., Theodor, J. 2015. The extended Price equation quantifies species selection on mammalian body size across the Palaeocene/Eocene Thermal Maximum. Proceedings of the Royal Society B. doi: 10.1098/rspb.2015.1097

Burger, B.J., Northward range extension of a diminutive-sized mammal (Ectocion parvus) and the implication of body size change during the Paleoc…, Palaeogeogr. Palaeoclimatol. Palaeoecol. (2012), http://dx.doi.org/10.1016/j.palaeo.2012.09.008

 

Sea-surface temperatures during the last interglaciation.

 

203_co2-graph-021116

The relentless rise of carbon dioxide (Credit: National Oceanic and Atmospheric Administration.)

A proverb of Confucius states “Study the past if you would divine the future.” Human activity ensures that our climate will become warmer in the next century and remain warm for many millennia to come which makes particularly pertinent the study of periods in which at least sectors of the Earth system may have been “warmer” than today. The last interglaciation (LIG, 129 to 116 thousand years ago) was one of the warmest periods in the last 800,000 years with an associated sea-level rise of 6 to 9 m above present levels . A new study by Jeremy S. Hoffman and colleagues, compiled 104 published LIG sea surface temperature (SST) records from 83 marine sediment core sites. Each core site was compared to data sets from 1870-1889 and 1995-2014, respectively. The analysis revealed that 129,000 years ago, the global ocean surface temperature was similar to the 1870-1889 average. But 125,000 years ago, the global SST increased by 0.5° ± 0.3°Celcius, reaching a temperature indistinguishable from the 1995-2014 average. The result is worrisome, because it shows that changes in temperatures which occurred over thousands of years, are now occurring in the space of a single century. The study also suggests that in the long term, sea level will rise at least six meters in response to the global warming.

Data from the study by Jeremy Hoffman et al. representing sample sites, sea surface temperatures, and historic carbon dioxide level

Data from the study by Jeremy Hoffman et al. representing sample sites, sea surface temperatures, and historic carbon dioxide level

The planet’s average surface temperature has risen about 2.0 degrees Fahrenheit (1.1 degrees Celsius) since the late 19th century. After the World War II, the atmospheric CO2 concentration grew, from 311 ppm in 1950 to 369 ppm in 2000. Glaciers  from the Greenland and Antarctic Ice Sheets are fading away, dumping 260 billion metric tons of water into the ocean every year. The ocean acidification is occurring at a rate faster than at any time in the last 300 million years, and  the patterns of rainfall and drought are changing and undermining food security which have major implications for human health, welfare and social infrastructure. In his master book L’Evolution Créatrice (1907), French philosopher Henri Bergson, wrote:  “A century has elapsed since the invention of the steam engine, and we are only just beginning to feel the depths of the shock it gave us.”

References:

J.S. Hoffman et al. Regional and global sea-surface temperatures during the last interglaciation. Science. Vol. 355, January 20, 2017, p. 276. doi: 10.1126/science.aai8464.

Past Interglacials Working Group of PAGES (2016), Interglacials of the last 800,000 years, Rev. Geophys., 54, 162–219, doi: 10.1002/2015RG000482. 

Bakker, P., et al. (2014), Temperature trends during the present and Last Interglacial periods—A multi-model-data comparison, Quat. Sci. Rev., 99, 224–243, doi: 10.1016/j.quascirev.2014.06.031.

Climate model simulations at the end of the Cretaceous.

gg_60212w_crater

Artist’s reconstruction of Chicxulub crater 66 million years ago.

About thirty years ago, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that a 10 km asteroid collided with the Earth and caused one of the most devastating events in the history of life. The impact created the 180-kilometre wide Chicxulub crater causing widespread tsunamis along the coastal zones of the surrounding oceans and released an estimated energy equivalent of 100 teratons of TNT and produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere.

To model the climatic effects of the impact, a team of scientist from the Potsdam Institute for Climate Impact Research (PIK), use literature information from geophysical impact modeling indicating that for a 2.9 km thick target region consisting of 30% evaporites and 70% water-saturated carbonates and a dunite projectile with 50% porosity, a velocity of 20 km/s and a diameter between 15 and 20 km, a sulfur mass of 100 Gt is produced. This is about 10,000 times the amount of sulfur released during the 1991 Pinatubo eruption. Additionally, for a sulfur mass of 100 Gt, about 1400 Gt of carbon dioxide are injected into the atmosphere, corresponding to an increase of the atmospheric CO2 concentration by 180 ppm. There could be additional CO2 emissions from ocean outgassing and perturbations of the terrestrial biosphere, adding a total of 360 ppm and 540 ppm of CO2. The main result is a severe and persistent global cooling in the decades after the impact. Global annual mean temperatures over land dropped to -32C in the coldest year and continental temperatures in the tropics reaching a mere -22C. This model is supported by a migration of cool, boreal dinoflagellate species into the subtropic Tethyan realm directly across the K–Pg boundary interval and the ingression of boreal benthic foraminifera into the deeper parts of the Tethys Ocean, interpreted to reflect millennial timescale changes in the ocean circulation after the impact (Vellekoop, 2014).

A time-lapse animation showing severe cooling due to sulfate aerosols from the Chicxulub asteroid impact 66 million years ago (Credit: PKI)

A time-lapse animation showing severe cooling due to sulfate aerosols from the Chicxulub asteroid impact 66 million years ago (Credit: PKI)

References:

Brugger J., G. Feulner, and S. Petri (2016), Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous, Geophys. Res. Lett., 43,  doi:10.1002/2016GL072241.

Alvarez, L. W., W. Alvarez, F. Asaro, and H. V. Michel (1980), Extraterrestrial Cause for the Cretaceous-Tertiary Extinction, Science, 208 (4448), 1095{1108, doi: 10.1126/science.208.4448.1095.

Galeotti, S., H. Brinkhuis, and M. Huber (2004), Records of post Cretaceous-Tertiary boundary millennial-scale cooling from the western Tethys: A smoking gun for the impact-winter hypothesis?, Geology, 32, 529, doi:10.1130/G20439.1

Johan Vellekoop, Appy Sluijs, Jan Smit, Stefan Schouten, Johan W. H. Weijers, Jaap S. Sinningh Damsté, and Henk Brinkhuis, Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary, PNAS (2014) doi: 10.1073/pnas.1319253111

The Early Aptian Oceanic Anoxic Event.

120moll

The Early Cretaceous (Aptian Age), 120 Ma.

The geological records show that large and rapid global warming events occurred repeatedly during the course of Earth history. The growing concern about modern climate change has accentuated interest in understanding the causes and consequences of these ancient abrupt warming events. The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval characterized by rapid global warming, dramatic changes in ocean circulation including widespread oxygen deficiency, and profound changes in marine biotas. During the event, black shales were deposited in all the main ocean basins. It was also associated with the calcification crisis of the nannoconids, the most ubiquitous planktic calcifiers during the Early Cretaceous. Their near disappearance is one of the most significant events in the nannoplankton fossil record.

sin-titulo

Scanning electron microscope photos of different nannofossil assemblages from Early Cretaceous chalks from the North Sea (adapted from Mutterlose & Bottini, 2013)

Calcareous nannoplankton represent a major component of oceanic phytoplankton. Their calcareous skeletons can be found in fine-grained pelagic sediments in high concentrations and the biomineralization of coccoliths is a globally significant rock-forming process. The ‘nannoconid decline’ is related to the emplacement of the Ontong Java Plateau (OJP). The  CO2 released by the flood basalts was the main player in the climatic events. However, records from the Pacific and Tethys realms demonstrate that during OAE 1a the  major shift in global oceanic osmium composition occurs well after the onset of the nannoconid crisis. Previous studies argued that the nannoconid crisis was caused by ocean acidification due to numerous pulses of CO2 and methane. The Ontong Java Plateau is a massive, submerged seafloor.  It covers an area of about 1,900,000 square kilometers. It  was emplaced ca. 120 Ma, with a much smaller magmatic pulse of ca. 90 Ma. The CO2 release was too late, and too gradual, to have caused the calcification crisis in the nannoconids by ocean acidification

References:

Naafs, B. D. A. et al., Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a, Nature Geosci. http://dx.doi.org/10.1038/ngeo2627 (2016)

Jenkyns, H. C. (2010), Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004, doi:10.1029/2009GC002788.

The EECO, the warmest interval of the past 65 million years.

Cenozoic strata on Seymour Island, Antarctica (© 2016 University of Leeds)

Cenozoic strata on Seymour Island, Antarctica (© 2016 University of Leeds)

During the last 540 million years, Earth’s climate has oscillated between three basic states: Icehouse, Greenhouse (subdivided into Cool and Warm states), and Hothouse (Kidder & Worsley, 2010). The “Hothouse” condition is relatively short-lived and is consequence from the release of anomalously large inputs of CO2 into the atmosphere during the formation of Large Igneous Provinces (LIPs), when atmospheric CO2 concentrations may rise above 16 times (4,800 ppmv), while the “Icehouse” is characterized by polar ice, with alternating glacial–interglacial episodes in response to orbital forcing. The ‘Cool Greenhouse” displays  some polar ice and alpine glaciers,  with global average temperatures between 21° and 24°C. Finally, the ‘Warm Greenhouse’ lacked of any polar ice, and global average temperatures might have ranged from 24° to 30°C.

Reconstructions of Earth’s history have considerably improved our knowledge of episodes of rapid emissions of greenhouse gases and abrupt warming. Consequently, the development of different proxy measures of paleoenvironmental parameters has received growing attention in recent years.

A) Scanning electron microphotographs of fossil Ginkgo adiantoides cuticle showing stomata (arrows) and epidermal cells. B) Scanning electron microphotographs of modern Ginkgo biloba cuticle.

A) Scanning electron microphotographs of fossil Ginkgo adiantoides cuticle showing stomata (arrows) and epidermal cells. B) Scanning electron microphotographs of modern Ginkgo biloba cuticle (From Smith et al. 2010)

The early Eocene was characterized by a series of short-lived episode  of global warming, superimposed on a long-term early Cenozoic warming trend. Atmospheric CO2 was the major driver of the overall warmth of the Eocene. For  the  Paleocene-Eocene  Thermal  Maximum (PETM; 55.8 million years ago), and the Early Eocene Climate Optimum (EECO; 51 to 53 million years ago) the transient rise of global temperatures has been estimated to be 4 to 8° (Hoffman et al., 2012).

Reconstructions using multiple climate proxy records, identified the EECO as the warmest interval of the past 65 million years. One such proxy measure is the stomatal frequency of land plants, which has been shown in some species to vary inversely with atmospheric pCO2 and has been used to estimate paleo-pCO2 for multiple geological time periods. Stomata are the controlled pores through which plants exchange gases with their environments, and play a key role in regulating the balance between photosynthetic productivity and water loss through transpiration. (Smith et al., 2010).

Sin título

Foraminiferal assemblage of the EECO (From KHANOLKAR and SARASWATI, 2015)

Pollen and other palynomorphs proved to be an extraordinary tool to palaeoenvironmental reconstruction. Terrestrial  microflora from the EECO indicates a  time  period  with  warm  and  humid  climatic  conditions and displays a higher  degree  of tropicality  than the microflora of  the PETM.

A new high-fidelity record of CO2 can be obtained by using the boron isotope of well preserved planktonic foraminifera. The boron isotopic composition of seawater is also recquiered to estimate the pH. The global mean surface temperature change for the EECO is thought to be ~14 ± 3 °C warmer than the pre-industrial period, and ~5 °C warmer than the late Eocene.

Evolution of atmospheric CO2 levels and global climate over the past 65 million years

Evolution of atmospheric CO2 levels and global climate over
the past 65 million years (From Zachos et al., 2008)

Since the start of the Industrial Revolution the anthropogenic release of CO2 into the Earth’s atmosphere has increased a 40%. Glaciers  from the Greenland and Antarctic Ice Sheets are fading away, dumping 260 billion metric tons of water into the ocean every year. The ocean acidification is occurring at a rate faster than at any time in the last 300 million years, and  the patterns of rainfall and drought are changing and undermining food security which have major implications for human health, welfare and social infrastructure. These atmospheric changes follow an upward trend in anthropogenically induced CO2 and CH4. If  fossil-fuel emissions continue unstoppable, in less than 300 years pCO2 will reach a level not present on Earth for roughly 50 million years.

 

References:

Eleni Anagnostou, Eleanor H. John, Kirsty M. Edgar, Gavin L. Foster, Andy Ridgwell, Gordon N. Inglis, Richard D. Pancost, Daniel J. Lunt, Paul N. Pearson. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 2016; DOI: 10.1038/nature17423

Zachos, J. C., Dickens, G. R. &  Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279283(2008)

Loptson, C. A., Lunt, D. J. & Francis, J. E. Investigating vegetation-climate feedbacks during the early Eocene. Clim. Past 10, 419436 (2014)

Robin Y. Smith, David R. Greenwood, James F. Basinger; Estimating paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada; Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 293, Issues 1–2, 1 (2010).

The Pliocene Warm Period, an analogue of a future warmer Earth.

 

Tuktoyuktuk Beach on the Arctic Ocean (From Wikipedia)

Tuktoyuktuk Beach on the Arctic Ocean (From Wikipedia)

Microfossils from deep-sea are crucial elements for our understanding of past and present oceans. Their skeletons take up chemical signals from the sea water, in particular isotopes of oxygen and carbon. Over millions of years, these skeletons accumulate in the deep ocean to become a major component of biogenic deep-sea sediments. The incorporation of Mg/Ca into the calcite of marine organisms, like foraminifera, is widely used to reconstruct the thermal evolution of the oceans throughout the Cenozoic. Planktic foraminifer Globigerinoides ruber is perhaps one of the most widely used species for reconstructing past sea-surface conditions. Additionally, Mg/Ca–oxygen isotope measurements of benthic foraminifera may be related to global ice volume and by extension, sea level (Evans et al., 2016). The importance of microfossils as tool for paleoclimate reconstruction was recognized early in the history of oceanography. John Murray, naturalist of the CHALLENGER Expedition (1872-1876) found that differences in species composition of planktonic foraminifera from ocean sediments contains clues about the temperatures in which they lived.

Scanning Electron Micrographs of Globigerinoides ruber (adapted from Thirumalai et al., 2014)

Scanning Electron Micrographs of Globigerinoides ruber (adapted from Thirumalai et al., 2014)

The most recent investigations have focused on unravelling the Pliocene Warm Period, a period proposed as a possible model for future climate. The analysis of the evolution of the major ice sheets and the temperature of the oceans indicates that during the middle part of the Pliocene epoch (3.3 Ma–3 Ma), global warmth reached temperatures similar to those projected for the end of this century, about 2°–3°C warmer globally on average than today.

The mid-Pliocene is used as an analog to a future warmer climate because it’s geologically recent and therefore similar to today in many aspects like the land-sea configuration, ocean circulation, and faunal and flora distribution. Mid- Pliocene sediments containing fossil proxies of climate are abundant worldwide, and many mid- Pliocene species are extant, making faunal and floral paleotemperature proxies based on modern calibrations possible (Robinson et al., 2012).

Surface air temperature anomalies of (top) the late 21st century and (bottom) the mid-Pliocene (from Robinson et al., 2012)

Surface air temperature anomalies of (top) the late 21st century and (bottom) the mid-Pliocene (from Robinson et al., 2012)

Foraminiferal Mg/Ca data suggest that the Pliocene tropics were the same temperature or cooler than present. At high latitudes, mid- Pliocene sea surface temperatures (SSTs) were substantially warmer than modern SSTs. These warmer temperatures were reflected in the vegetation of Iceland, Greenland, and Antarctica. Coniferous forests replaced tundra in the high latitudes of the Northern Hemisphere. Additionally, the Arctic Ocean may have been seasonally free of sea-ice, and were large fluctuations in ice cover on Greenland and West Antarctica (Dolan et al., 2011; Lunt et al., 2012).  These results highlights the importance of the Pliocene Warm Period to better understand future warm climates and their impacts.

Reference:

David Evans, Chris Brierley, Maureen E. Raymo, Jonathan Erez, Wolfgang Müller; Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change; Earth and Planetary Science Letters, Volume 438, 15 March 2016, Pages 139-148

Jochen Knies, Patricia Cabedo-Sanz, Simon T. Belt, Soma Baranwal, Susanne Fietz, Antoni Rosell-Mel. The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications, 2014; 5: 5608 DOI: 10.1038/ncomms6608

Robinson, M.; Dowsett, H. J.; Chandler, M. A. (2008). “Pliocene role in assessing future climate impacts”; Eos 89 (49): 501–502.

Ecosystem instability in the Late Triassic and the early evolution of dinosaurs.

The Late Triassic Petrified Forest Member of the Chinle Formation (Photo from AASG)

The Late Triassic Petrified Forest Member of the Chinle Formation (Photo from AASG)

Dinosaurs likely originated in the Middle Triassic and the first unequivocal dinosaur fossils are known from the late Carnian, but much about the geological and temporal backdrop of early dinosaur history remains poorly understood. A key question is why early dinosaurs were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, for at least 30 million years after their origin.

The oldest well-dated identified dinosaurs are from the late Carnian (approx. 230 Ma) of the lower Ischigualasto Formation in northwestern Argentina. Similarly, the Santa Maria and Caturrita formations in southern Brazil preserve basal dinosauromorphs, basal saurischians, and early sauropodomorphs. In North America, the oldest dated occurrences of vertebrate assemblages with dinosaurs are from the Chinle Formation, but are less abundant and species rich compared to those from South America. The fact that those assemblages were at moderately high paleolatitudes during the Late Triassic, and the North American assemblages were near the paleoequator supports the hypotheses for a diachronous rise of dinosaurs across paleolatitudes (Irmis et al., 2011).

A reconstructed scene from the Late Triassic (Norian) of central Pangea. (Credit: image from Brusatte, S. L. 2008)

A reconstructed scene from the Late Triassic (Norian) of central Pangea. (Image from Brusatte, S. L. 2008, Dinosaurs, Quercus Publishing, London).

The Late Triassic is marked by a return to the “hothouse” condition of the Early Triassic, with two greenhouse crisis that may also have played a role in mass extinctions and long-term evolutionary trends (Retallack, 2013). The paleoclimate was a very arid with intense evaporation rate. Although there was at least one time of significant increase in rainfall known as the “Carnian Pluvial Event”, possibly related to the rifting of Pangea. Now, a multiproxy study  suggests  that fluctuating aridity in tropical and subtropical Pangea could explain why Triassic dinosaur faunas at low latitudes are restricted to small, slower growing carnivorous forms, whereas large-bodied herbivores, including sauropodomorph dinosaurs, are absent at low paleolatitudes during the Late Triassic “hothouse.” The palynomorphs recovered from sediments of the Chinle Formation indicate a major change from a seed fern-dominated (Alisporites) assemblage with accessory gymnosperms to one dominated by conifers and seed ferns in the lower portion of the Petrified Forest Member. In addition, the extensive charcoal record in the Petrified Forest Member provides evidence of paleo-environmental variability and aridity. 

 

References:

Jessica H. Whiteside, Sofie Lindström, Randall B. Irmis, Ian J. Glasspool, Morgan F. Schaller, Maria Dunlavey, Sterling J. Nesbitt, Nathan D. Smith, and Alan H. Turner. 2015. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. PNAS: doi:10.1073/pnas.1505252112

Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J., and Norell, M. A. 2010. The origin and early radiation of dinosaurs. Earth-Science Reviews, 101, 68-100

Holz, M., Mesozoic paleogeography and paleoclimates – a discussion of the diverse greenhouse and hothouse conditions of an alien world, Journal of South American Earth Sciences (2015), doi: 10.1016/j.jsames.2015.01.001

Nesbitt,  S. J., Irmis,  R. B, Parker,  W. G. (2007) A critical re-evaluation of the Late Triassic di-nosaur taxa of North America. J Syst Palaeontology 5(2):209243

Sellwood, B.W. & Valdes, P.J. 2006. Mesozoic climates: General circulation models and the rock Record. Sedimentary Geology 190:269–287.

 

The real Jurassic World.

Global paleogeographic reconstruction of the Earth in the late Jurassic period 150 Ma. From Wikimedia Commons

Global paleogeographic reconstruction of the Earth in the late Jurassic period 150 Ma. Credit: Dr Ron Blakey

The transition from Triassic to Early Jurassic is marked by a major biotic crisis in the marine and terrestrial realms. In the oceans, this event eliminated conodonts and nearly annihilated corals, ammonites, brachiopods and bivalves. In land, most mammal-like reptiles and large amphibians disappeared, as well as early dinosaur groups. During the Jurassic (201-145 mya) the breakup of the supercontinent Pangaea continued and accelerated with the opening of the North Atlantic by the rifting of Africa and North America, giving rise to the supercontinents of Laurasia and Gondwana. The sea level rise flooded continental areas around Pangaea, forming huge epicontinental seas, especially in northern Africa and eastern Laurasia (modern China). The world was predominantly warm with at least four times the present level of atmospheric CO2. The period is also characterized by the explosive adaptive radiation of dinosaurs and the diversification of the cycads.

The Early Jurassic climate was characterized by a global warming, with average summer temperatures that exceeded  35°C in low-latitude regions of western Pangaea where eolian sandstones testify to the presence of vast deserts (Holz, 2015). The early Toarcian Oceanic Anoxic Event  (T-OAE; ∼183 mya) is considered as one of the most severe of the Mesozoic era. It’s associated with a major negative carbon isotope excursion, mass extinction, marine transgression and global warming (Huang, 2014, Ullmann et al., 2014). The T-OAE has been extensively studied in the past three decades although there is no consensus about the causes or triggering mechanisms behind this event.

Painting of a late Jurassic Scene on one of the large island in the Lower Saxony basin in northern Germany (From Wikimedia Commons)

Painting of a late Jurassic Scene on one of the large island in the Lower Saxony basin in northern Germany (From Wikimedia Commons)

After the extinction of many carnivorous crurotarsan lineages (phytosaurs, ornithosuchids, rauisuchians) at the Triassic–Jurassic boundary, theropod dinosaurs increased their diversity and exhibit a greater range of morphological disparity. Sauropodomorphs also achieved a worldwide distribution and become more graviportal and increased their body size. The presence of early armored dinosaurs (thyreophorans) in North America, Asia, and Europe, but their absent from the southern African record, suggests some degree of provinciality in early ornithischian faunas (Brusatte et al., 2010).

By the Mid-Jurassic, Gondwana started to break up in different blocks: Antarctica, Madagascar, India, and Australia in the east, and Africa and South America in the west, with relatively warm sea-surface conditions (26–30◦C) from Mid-Jurassic (∼160Ma) to the Early Cretaceous (∼115Ma) in the Southern Ocean.  There was a drastic climatic decline during the Late Callovian. This decline in temperature lasted about 2.6My and is know as the “Callovian Ice Age”. It has been interpreted in terms of an inverse greenhouse effect, triggered by drawdown of CO2 consequent upon excess carbón burial (Dromart et al, 2003).  The Puchezh-Katunki impact crater in Russia is prior to the Callovian extinction event and is not considered as a factor for this biotic extinction event.

During the Late Jurassic, North America completed its separation from Gondwana, and Gondwana was split into a northern and southern continent by the rift system opening the proto-Indian Ocean. The geological and geochemical record suggest that low-latitude environments were arid and tropical ever-wet conditions were absent. Maximum plant diversity was concentrated at midlatitudes, whith forests dominated by a mixture of conifers, cycadophytes, pteridosperms, ferns, and sphenophytes.

References:

Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J., and Norell, M. A. 2010. The origin and early radiation of dinosaurs. Earth-Science Reviews, 101, 68-100

Holz, M., Mesozoic paleogeography and paleoclimates – a discussion of the diverse greenhouse and hothouse conditions of an alien world, Journal of South American Earth Sciences (2015), doi: 10.1016/j.jsames.2015.01.001

Jenkyns, H. C. (2010), Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004, doi: 10.1029/2009GC002788.

Sellwood, B.W. & Valdes, P.J. 2006. Mesozoic climates: General circulation models and the rock Record. Sedimentary Geology 190:269–287.

Corwin Sullivan et al. 2014. The vertebrates of the Jurassic Daohugou Biota of northeastern China. Journal of Vertebrate Paleontology, vol. 34, no. 2; doi: 10.1080/02724634.2013.787316

Response of marine ecosystems to the PETM.

Biotic change among foraminifera during and after the PETM. (From Speijer et al., 2012)

Biotic change during and after the PETM. (From Speijer et al., 2012)

The Paleocene-Eocene Thermal Maximum (PETM; 55.8 million years ago), was a short-lived (~ 200,000 years) global warming event attributed to a rapid rise in the concentration of greenhouse gases in the atmosphere. It was suggested that this warming was initiated by the melting of methane hydrates on the seafloor and permafrost at high latitudes. During the PETM, around 5 billion tons of CO2 was released into the atmosphere per year, and temperatures increased by 5 – 9°C. This event was accompanied by other large-scale changes in the climate system, for example, the patterns of atmospheric circulation, vapor transport, precipitation, intermediate and deep-sea circulation and a rise in global sea level.

Dinoflagellate cysts: Adnatosphaeridium robustum and Apectodinium augustum (From Sluijs and Brinkhuis, 2009)

Dinoflagellate cysts: Adnatosphaeridium robustum and Apectodinium augustum (From Sluijs and Brinkhuis, 2009)

The rapid warming at the beginning of the Eocene has been inferred from the widespread distribution of dinoflagellate cysts. One taxon in particularly, Apectodinium, spans the entire carbon isotope excursion (CIE) of the PETM. The distribution of Apectodinium is linked to high temperatures and increased food availability.

The most disruptive impact during the PETM was likely the exceptional ocean acidification and the rise of the calcite dissolution depth, affecting marine organisms with calcareous shells (Zachos et al., 2005). When CO2 dissolves in seawater, it produce carbonic acid. The carbonic acid dissociates in the water releasing hydrogen ions and bicarbonate. The formation of bicarbonate then removes carbonate ions from the water, making them less available for use by organisms.

Nannofossil abundance changes during the PETM. (From Kump, 2009.)

Nannofossil abundance changes during the PETM. (From Kump, 2009.)

The PETM onset is also marked by the largest deep-sea mass extinction among calcareous benthic foraminifera (including calcareous agglutinated taxa) in the last 93 million years. Similarly, planktonic foraminifera communities at low and high latitudes show reductions in diversity, while larger foraminifera are the most common constituents of late Paleocene–early Eocene carbonate platforms.

The response of most marine invertebrates (mollusks, echinoderms, brachiopods) to paleoclimatic change during the PETM is poorly documented.

Coccolithus bownii and Toweius pertusus

Coccolithus bownii and Toweius pertusus (Adapted from Bown and Pearson, 2009)

The PETM is also associated with dramatic changes among the calcareous plankton,characterized by the appearance of transient nanoplankton taxa of heavily calcified forms of Rhomboaster spp., Discoaster araneus, and D. anartios as well as Coccolithus bownii, a more delicate form.

The combination of global warming and the release of large amounts of carbon to the ocean-atmosphere system during the PETM has encouraged analogies to be drawn with modern anthropogenic climate change. The current rate of the anthropogenic carbon input  is probably greater than during the PETM, causing a more severe decline in ocean pH and saturation state. Also the biotic consequences of the PETM were fairly minor, while the current rate of species extinction is already 100–1000 times higher than would be considered natural. This underlines the urgency for immediate action on global carbon emission reductions.

Comparison of the effects of anthropogenic emissions (total of 5000 Pg C over 500 years) and PETM carbon release (3000 Pg C over 6 kyr) on the surface ocean saturation state of calcite. From Zeebe, 2013

Comparison of the effects of anthropogenic emissions (total of 5000 Pg C over 500 years) and PETM carbon release (3000 Pg C over 6 kyr) on the surface ocean saturation state of calcite. From Zeebe, 2013

 

References:

Maria Rose Petrizzo, The onset of the Paleocene–Eocene Thermal Maximum (PETM) at Sites 1209 and 1210 (Shatsky Rise, Pacific Ocean) as recorded by planktonic foraminifera, Marine Micropaleontology, Volume 63, Issues 3–4, 13 June 2007, Pages 187-200

Zeebe RE and Zachos JC. 2013 Long-term legacy ofmassive carbon input to the Earth system: Anthropocene versus Eocene. Phil Trans R Soc A 371: 20120006. http://dx.doi.org/10.1098/rsta.2012.0006.

Wright JD, Schaller MF (2013) Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. Proc Natl Acad Sci USA 110(40):15908–15913.

Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107, http://dx.doi.org/10.5670/oceanog.2009.100

Raffi, I. and de Bernardi, B.: Response of calcareous nannofossils to the Paleocene-Eocene Thermal Maximum: observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge – SW Atlantic), Mar. Micropaleontol., 69, 119–138, 2008.

Robert P. SPEIJER, Christian SCHEIBNER, Peter STASSEN & Abdel-Mohsen M. MORSI; Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM), Austrian Journal of Earth Sciences. Vienna. 2012. Volume 105/1.

The Triassic Paleoclimate.

Early to Middle Triassic (240Ma) From Wikimedia Commons.

Early to Middle Triassic (240Ma) From Wikimedia Commons.

There are three basic states for Earth climate: Icehouse, Greenhouse (subdivided into Cool and Warm states), and Hothouse (Kidder & Worsley, 2010). The “Hothouse” condition is relatively short-lived and is consequence from the release of anomalously large inputs of CO2 into the atmosphere during the formation of Large Igneous Provinces (LIPs), when atmospheric CO2 concentrations may rise above 16 times (4,800 ppmv), while the “Icehouse” is characterized by polar ice, with alternating glacial–interglacial episodes in response to orbital forcing. The ‘Cool Greenhouse” displays  some polar ice and alpine glaciers,  with global average temperatures between 21° and 24°C. Finally, the ‘Warm Greenhouse’ lacked of any polar ice, and global average temperatures might have ranged from 24° to 30°C.

The rifting of Pangea during the Mesozoic modified the paleoposition and shoreline configuration of the land masses and generated huge epicontinental seas. This altered significantly the oceanic circulation and caused profound consequences for paleoclimates and for the evolution of life.

Siberian flood-basalt flows in Putorana, Taymyr Peninsula.(From Earth science: Lethal volcanism, Paul B. Wignall, 2011,  Nature 477, 285–286 )

Siberian flood-basalt flows in Putorana, Taymyr Peninsula.(From Earth science: Lethal volcanism, Paul B. Wignall, 2011, Nature 477, 285–286 )

During the Late Permian, massive volcanic eruptions in Siberia covered more than 2 millions of km 2 with lava flows, releasing more carbon in the atmosphere and high amounts of fluorine and chlorine increasing the climatic instability, which means that the Mesozoic began under extreme hothouse conditions.

The Early Triassic transition is marked by a moderate oxygen depletion and by mass extinction of glossopterids, gigantopterids, tree lycopsids and cordaites, as major contributors to coal deposits in the southern hemisphere. That was accompanied  by unusually anoxic swamp soils (Retallack, 2013). The rifting of Gondwana began during the Early Triassic with the opening of the Indian Ocean and the separation of India and Australia, that modified shoreline configuration and enhanced platform areas inducing intense marine biodiversification. It was suggested that during that time there was a moderate oxygen depletion that caused the low body size of the amphibian and reptilian life-forms found in those rocks.

Fossil of Lystrosaurus, one of the few survivors of the Late Permian shows a variety of adaptations to low oxygen atmosphere. It was by far the most common terrestrial vertebrate of the Early Triassic (Staatliches Museum für Naturkunde Stuttgart; from Wikimedia Commons).

Fossil of Lystrosaurus, one of the few survivors of the Late Permian shows a variety of adaptations to low oxygen atmosphere. It was by far the most common terrestrial vertebrate of the Early Triassic (Staatliches Museum für Naturkunde Stuttgart; from Wikimedia Commons).

By the Mid Triassic, global temperature was still high – between 20°C and 30°C – and the atmospheric CO2 began to increase. There are reported episodes of humid climate registered by fossil vertebrates from the Molteno Formation in South Africa, and from Los Rastros Formation in central western Argentina.

The Late Triassic is marked by a return to the hothouse condition of the Early Triassic, with two greenhouse crisis that may also have played a role in mass extinctions and long-term evolutionary trends (Retallack, 2013). The paleoclimate was a very arid with intense evaporation rate. Although there was at least one time of significant increase in rainfall known as the “Carnian Pluvial Event”, possibly related to the rifting of Pangea. Massive volcanic eruptions from a large region known as the Central Atlantic Magmatic Province (CAMP) release huge amounts of lava and gas, including carbon dioxide, sulfur and methane into the atmosphere which led to global warming and acidification of the oceans.

Light-microscope photographs of Classopollis pollen from the Late Triassic (Image adapted from Kürschner et al., 2013).

Light-microscope photographs of Classopollis pollen from the Late Triassic (Image adapted from Kürschner et al., 2013).

The End-Triassic Extinction  is probably the least understood of the big five. Most mammal-like reptiles and large amphibians disappeared, as well as early dinosaur groups. In the oceans, this event eliminated conodonts and nearly annihilated corals, ammonites, brachiopods and bivalves. In the Southern Hemisphere, the vegetation turnover consisted in the replacement to Alisporites (corystosperm)-dominated assemblage to a Classopollis (cheirolepidiacean)-dominated one.

Most of scientists agree that the extinctions were caused by massive volcanic activity associated with the break-up of the super-continent Pangaea. Another theory is that a   huge impact was the trigger of the extinction event. At least two craters impact were reported by the end of the Triassic. The Manicouagan Impact crater in the Côte-Nord region of Québec, Canada was caused by the impact of a 5km diameter asteroid, and it was suggested that could be part of a multiple impact event which also formed the Rochechouart crater in France, Saint Martin crater in Canada, Obolon crater in Ukraine, and the Red Wing crater in USA (Spray et al., 1998).

References:

Holz, M., Mesozoic paleogeography and paleoclimates – a discussion of the diverse greenhouse and hothouse conditions of an alien world, Journal of South American Earth Sciences (2015), doi: 10.1016/j.jsames.2015.01.001

Sellwood, B.W. & Valdes, P.J. 2006. Mesozoic climates: General circulation models and the rock Record. Sedimentary Geology 190:269–287.

Retallack, G.J. 2013. Permian and Triassic greenhouse crises. Gondwana Research 24:90–103.

Retallack, G.J. 2009. Greenhouse crises of the past 300 million years. Geological Society of America Bulletin, 121:1441–1455.