On This Side of Paradise.

Stardate 3417.3. The Enterprise has arrived to the planet Omicron Ceti III to catalog the destruction suffered by an agricultural colony stablished in 2264. It was assumed that the colonists are dead because the planet was bathed in Berthold rays, a lethal form of radiation. Although there was no sign of animal life on the planet, the colonists were found alive and in excellent health. Mr. Spock, intrigued about the survival of the colony, is conducted by Leila Kalomi, a botanist he had met six years prior on Earth, to a field with very strange flowers which expelled some spores into his face. Spock begun to feel sick, and after a brief agonizing struggle, he smiled and confessed his love for Leila. Like Spock, all the members of the Enterprise that were exposed to the spores changed their behavior. The only one who resisted the effect of the spores was Captain Kirk.

Spock with Leila Kalomi (Image: CBS)

The key elements for the colony survival were the spores. The term ‘spores’ derived from the Greek word for seed. In a broad sense, spores are the reproductive structures of bacteria, fungi, algae, protists and land plants, adapted for dispersion and surviving for extended periods of time during unfavorable conditions.

The colonization of land by vascular plants in the Paleozoic was one of the most significant events in Earth’s history. We could hypothesize that terrestrial colonization was not possible prior to the evolution of the sporopollenin spore wall, and this adaptation is considered to be a synapomorphy of the embryophytes. Sporopollenin is the major component of the spore (and pollen) wall. This highly resistant biopolymer occurs in certain charophyceans, but is located in an inner layer of the zygote wall.

Cryptospores from the Early Middle Ordovician of Argentina (From Rubinstein et al., 2010)

Like their algal ancestors, all plant life cycle goes through both haploid (gametophyte) and diploid (sporophyte) stages. In vascular plants, the sporophyte generation predominates. The sporophyte produces the spores, which contain only a single copy of the chromosomes. The earliest dispersed spores attributable to terrestrial plants, termed cryptospores, are known from the Middle Ordovician. Cryptospores are believed to have been produced by bryophyte-like plants, but recently, they were interpreted as the product of a diverse group of mostly extinct plants, whose precise affinities to living clades remain unclear.

C. barrandei sp. nov., from Czech Republic (scale bar, 10 mm). From Libertín et al., 2018.

The description of Cooksonia barrandei (432 my, Czech Republic) shed light on the origins of the alternation of generations in land plants. The genus Cooksonia (named in honor of Isabel Cookson) is generally accepted as the oldest land plant, with a broad distribution in the Late Silurian and Early Devonian periods, including North America, North Africa, Europe, Asia and South America. Cooksonia barrandei (the species name is honoring Joachim Barrande, a famous French palaeontologist who lived in Prague), and is five million years older than the oldest previously described cooksonioids (427 mya). The plants were isosporous (produced only one kind of spore) and of small size, with a bent, isotomously branched axis with terminal branches completely preserved.

Star Trek has been a cult phenomenon for decades. The Original Series premiered on September 8, 1966, and has spawned five successor shows starting in the 1980s and several feature films , comic books, novels and an animated series. Star Trek also influenced generations of viewers about advanced science and engineering. “This side of Paradise” remains as one of the best episode of Star Trek. It was premiered on March 2, 1967. The title was taken by the final line of the poem “Tiare Tahiti” by Rupert Brooke: “Well this side of Paradise! …. There’s little comfort in the wise.”

References:

Libertín, Milan; Kvaček, Jiří; Bek, Jiří; Žárský, Viktor & Štorch, Petr (2018), “Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous”, Nature Plants, 4 (5): 269–271, doi:10.1038/s41477-018-0140-y

Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A., & Steemans, P. (2010). Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist, 188(2), 365–369. doi:10.1111/j.1469-8137.2010.03433.x 

 

Advertisements

Lessons from the past: Paleobotany and Climate Change

 

From 1984–2012, extensive greening has occurred in the tundra of Western Alaska, the northern coast of Canada, and the tundra of Quebec and Labrador. Credits: NASA’s Goddard Space Flight Center/Cindy Starr.

For the last 540 million years, Earth’s climate has oscillated between three basic states: Icehouse, Greenhouse (subdivided into Cool and Warm states), and Hothouse. The “Hothouse” condition is relatively short-lived and is consequence from the release of anomalously large inputs of CO2 into the atmosphere during the formation of Large Igneous Provinces (LIPs), when atmospheric CO2 concentrations may rise above 16 times (4,800 ppmv), while the “Icehouse” is characterized by polar ice, with alternating glacial–interglacial episodes in response to orbital forcing. The ‘Cool Greenhouse” displays  some polar ice and alpine glaciers,  with global average temperatures between 21° and 24°C. Finally, the ‘Warm Greenhouse’ lacks of any polar ice, and global average temperatures might have ranged from 24° to 30°C.

Reconstructions of Earth’s history have considerably improved our knowledge of episodes of rapid emissions of greenhouse gases and abrupt warming. Several episodes of global climate change were similar in magnitude to the anthropogenically forced climate change that has occurred during the past century. Consequently, the development of different proxy measures of paleoenvironmental parameters has received growing attention in recent years. Paleobotany, the study of fossil plants in deep geological time, offers key insights into vegetation responses to past global change, including suitable analogs for Earth’s climatic future.

Monthly average atmospheric carbon dioxide concentration at Mauna Loa Observatory, Hawaii.

The main forces of climatic change on a global scale are solar forcing, atmospheric composition, plate tectonics, Earth’s biota, and of course, us. Human activity is a major driver of the dynamics of Earth system. Until the Industrial Revolution, the average global CO2 levels fluctuated between about 170 ppm and 280 ppm. But with the beginning of the Industrial Era, that number risen above 300 ppm, currently averaging an increase of more than 2 ppm per year. The average monthly level of CO2 in the atmosphere on last April exceeded the 410 ppm for first time in history. Thus we could hit an average of 500 ppm within the next 45 years, a number that have been unprecedented for the past 50–100+ million years according to fossil plant-based CO2 estimates. Therefore, the closest analog for today conditions is the Eocene, meaning greater similarities in continental configuration, ecosystem structure and function, and global carbon cycling.

Some of the best-studied intervals of global change in the fossil plant record include the Triassic–Jurassic boundary, 201.36 ± 0.17 Mya; the PETM, 56 Mya; and the Eocene–Oligocene boundary, 33.9 Mya.The first two events represent rapid greenhouse gas–induced global warming episodes; the last coincides with the initiation of the Antarctic ice sheet and global cooling leading to our current icehouse.

Time line of plant evolution (From McElwain, 2018)

During the PETM, compositional shifts in terrestrial vegetation were marked but transient in temperate latitudes and long-lived in the tropics. The PETM is characterized by the release of 5 billion tons of CO2 into the atmosphere, while temperatures increased by 5 – 8°C. High temperatures and likely increased aridity in the North American temperate biomes resulted in geologically rapid compositional changes as local mixed deciduous and evergreen forest taxa (such as Taxodium) decreased in relative abundance. These suggest that global warming has a marked effect on the composition of terrestrial plant communities that is driven predominantly by migration rather than extinction. However, it’s difficult to draw parallels with Anthropocene warming and vegetation responses because they are occurring at a minimum of 20 times faster than any past warming episode in Earth’s history.

In the early Eocene (56 to 49 Mya), a time of peak sustained global warmth, the Arctic Ocean was ice free, with a mosaic of mixed deciduous, evergreen (Picea, Pinus), and swamp forests, and with high densities of the aquatic fern Azolla. The Azolla bloom reduced the carbon dioxide from the atmosphere to 650 ppm, reducing temperatures and setting the stage for our current icehouse Earth. The eventual demise of Azolla in the Arctic Ocean is attributed to reduced runoff and a slight salinity increase.

The modern fern Azolla filiculoides (From Wikipedia)

The Earth’s poles have warmed and will continue to warm at a faster rate than the average planetary warming, because the heat is readily transported poleward by oceans and the atmosphere due to positive feedback effects involving snow cover, albedo, vegetation, soot, and algal cover in the Arctic and Antarctic. This phenomenon is known as “polar amplification”.

Recent studies about the greening of the Arctic indicates that increasing shrubiness has likely already had an unexpected negative impact on herbivore populations, such as caribou, by decreasing browse quality. Thus, it is important to predict how short-term temporal trends in Arctic vegetation change will continue under CO2-induced global warming. The paleobotanical record of high Arctic floras may provide broad insight into these questions.

References:

Jennifer C. McElwain, Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change, Annual Review of Plant Biology  (2018), DOI: 10.1146/annurev-arplant-042817-040405

 

A brief introduction to the Carnian Pluvial Episode.

Early-late Carnian (Late Triassic) palaeogeographic reconstruction showing some of the main vertebrate-bearing units (From Bernardi et al. 2018)

Dinosaurs likely originated in the Early to Middle Triassic. The Manda beds of Tanzania yielded the remains of the possible oldest dinosaur, Nyasasaurus parringtoni, and Asilisaurus, a silesaurid (the immediate sister-group to Dinosauria). However the oldest well-dated identified dinosaurs are from the late Carnian of the lower Ischigualasto Formation in northwestern Argentina, dated from 231.4 Ma to 225.9 Ma. The presence of dinosaurs, such as Panphagia, Eoraptor, and Herrerasaurus support the argument that Dinosauria originated during the Ladinian or earlier and that they were already well diversified in the early Carnian. Similarly, the Santa Maria and Caturrita formations in southern Brazil preserve basal dinosauromorphs, basal saurischians, and early sauropodomorphs. In North America, the oldest dated occurrences of vertebrate assemblages with dinosaurs are from the Chinle Formation. Two further early dinosaur-bearing formations, are the lower (and upper) Maleri Formation of India and the Pebbly Arkose Formation of Zimbabwe. These skeletal records of early dinosaurs document a time when they were not numerically abundant, and they were still of modest body size (Eoraptor had a slender body with an estimated weight of about 10 kilograms).

Trace fossil evidence suggests that the first dinosaur dispersal in the eastern Pangaea is synchronous with an important climate-change event named the “Carnian Pluvial Episode” (CPE) or “Wet Intermezzo”, dated to 234–232 Ma.

Skeleton of Eoraptor lunensis (PVSJ 512) in left lateral view. Scale bar equals 10 cm. From Sereno et al., 2013.

The Late Triassic is marked by a return to the hothouse condition of the Early Triassic, with two greenhouse crisis that may also have played a role in mass extinctions. Isotopic  records suggest  a global carbon cycle perturbation during the Carnian that was coincident with complex environmental changes and biotic turnover.

The CPE is often described as a shift from arid to more humid conditions (global warming, ocean acidification, mega-monsoonal conditions, and a generalised increase in rainfall). In the marine sedimentary basins of the Tethys realm, an abrupt change of carbonate factories and the establishment of anoxic conditions mark the beginning of the climate change. The CPE also marks the first massive appearance of calcareous nannoplankton, while groups, like bryozoans and crinoids, show a sharp decline during this event.

Palynological association from the Heiligkreuz Formation provide information on palynostratigraphy and palaeoclimate during the last part of the Carnian Pluvial Event (CPE). From Roghi et al., 2014

On land, palaeobotanical evidence shows a shift of floral associations of towards elements more adapted to humid conditions (the palynological record across the CPE suggest at least 3–4 discrete humid pulses). Several families and orders make their first appearance during the Carnian: bennettitaleans, modern ferns, and conifer families (Pinaceae, Araucariaceae, Cheirolepidaceae). The oldest biological inclusions found preserved in amber also come from the Carnian; and key herbivorous groups such as dicynodonts and rhynchosaurs, which had represented 50% or more of faunas, disappeared, and their places were taken by dinosaurs.

Despite the global significance of the CPE,  the trigger of the environmental change  is still disputed. Volcanic emissions from the Wrangellia igneous province and the dissociation of methane clathrates could be linked to the CPE. It seems that the combination of that events  would be the most likely explanation for the substantial shift of the C isotope excursion observed at the CPE.

 

References:

Massimo Bernardi et al. Dinosaur diversification linked with the Carnian Pluvial Episode, Nature Communications (2018). DOI: 10.1038/s41467-018-03996-1

Miller et al., Astronomical age constraints and extinction mechanisms of the Late Triassic Carnian crisis, Scientific Reports | 7: 2557 | (2017) DOI:10.1038/s41598-017-02817-7

Rogui et al. Field trip to Permo-Triassic Palaeobotanical and Palynological sites of the Southern Alps, Geo.Alp. 11. 29-84. (2014)

Paul C. Sereno, Ricardo N. Martínez & Oscar A. Alcober (2013) Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha),Journal of Vertebrate Paleontology, 32:sup1, 83-179, DOI: 10.1080/02724634.2013.820113

Halloween special V: Lovecraft’s paleontological Journey

H.P. Lovecraft’s love for astronomy is well known. As an amateur astronomer, Lovecraft attended several lectures from leading astronomers and physicists of his time. In 1906 he wrote a letter to the Scientific American on the subject of  finding planets in the solar system beyond Neptune. Around this time he began to write two astronomy columns for the Pawtuket Valley Gleaner and the Providence Tribune. He also wrote a treatise, A Brief Course in Astronomy – Descriptive, Practical, and Observational; for Beginners and General Readers. In several of his astronomical articles he describes meteors as  “the only celestial bodies which may be actually touched by human hands”. But Lovecraft was also obsessed with the concept of deep time, so geology and paleontology were also present in his writings.

Lovecraft’s monsters are certainly titanic, biologically impossible beings, from dimensions outside our own. He began conjuring monsters almost from the start of his career. In “The Nameless City”, published in the November 1921 issue of the amateur press journal The Wolverine, and often considered the first Cthulhu Mythos story, he describes an ancient race of reptiles that built the city: “They were of the reptile kind, with body lines suggesting sometimes the crocodile, sometimes the seal, but more often nothing of which either the naturalist or the palaeontologist ever heard.”  

Panorama of Ross Island showing Hut Point Peninsula (foreground), Mount Erebus (left) and Mount Terror (right), Antarctica. Photo: John Bortniak, NOAA

According to his biographer S. T. Joshi, Lovecraft was fascinated by Antarctica since an early age. Much of this fascination is recognizable in his famous novel “At the Mountains of Madness”, written in 1931. The novel was rejected by Weird Tales and finally was published by Astounding Stories in a serial form in 1936. “At the Mountains of Madness” is told from the perspective of William Dyer, a geologist from Miskatonic University who flies into an unexplored region of Antarctica. He’s accompanied by Professor Lake, a biologist, Professor Pabodie, an engineer, and some graduate students. The basic plot of the novel is the discovery of the frozen remains of bizarre entities from the deep space and their even more terrifying “slaves”:  the  shoggoths. The story could be divided in two parts. The first one is particularly rich, detailed and shows an impressive scientific erudition. This is clear in the following paragraph when he describes something that Professor Lake found: “He  was strangely convinced that the marking was the print of some bulky, unknown, and radically unclassifiable organism of considerably advanced evolution, notwithstanding that the rock which bore it was of so vastly ancient a date—Cambrian if not actually pre-Cambrian— as to preclude the probable existence not only of all highly evolved life, but of any life at all above the unicellular or at most the trilobite stage. These fragments, with their odd marking, must have been 500 million to a thousand million years old”. 

Of course, one of the most fascinating parts of the novel is the description of the Elder Things: “Cannot yet assign positively to animal or vegetable kingdom, but odds now favour animal. Probably represents incredibly advanced evolution of radiata without loss of certain primitive features. Echinoderm resemblances unmistakable despite local contradictory evidences. Wing structure puzzles in view of probable marine habitat, but may have use in water navigation. Symmetry is curiously vegetable-like, suggesting vegetable’s essentially up-and-down structure rather than animal’s fore-and-aft structure. Fabulously early date of evolution, preceding even simplest Archaean protozoa hitherto known, baffles all conjecture as to origin.” According with  S.T. Joshi, Lovecraft based his description of the Elder Thing in the fossil crinoids drawn by E. Haeckel in  Kunstformen der Natur.

E. Haeckel’s Kunstformen der Natur (1904), plate 90: Cystoidea. From Wikimedia Commons

“The Shadow Out of Time” (1935) was H. P. Lovecraft’s last major story. It’s told from the perspective of Nathaniel Wingate Peaslee, a professor of political economy at Miskatonic University. During five years, this man suffers a bizarre form of amnesia  followed by vivid dreams of aliens cities in ancient landscapes.  Later, Peaslee discovered that a small number of people throughout history suffered the same type of amnesia. They were possessed by the Great Race, a group of cone shaped creatures who developed the technique of swapping minds with creatures of another era with the purpose of learn the secrets of the Universe. Peaslee describes the gardens that surround the cities of his visions with detail. There was calamites, cycads, trees of coniferous aspect, and small, colourless flowers: “The far horizon was always steamy and indistinct, but I could see that great jungles of unknown tree-ferns, calamites, lepidodendra, and sigillaria lay outside the city, their fantastic frondage waving mockingly in the shifting vapours.”

Calamites was a genus of tree-sized, spore-bearing plants that lived during the Carboniferous and Permian periods (about 360 to 250 million years ago), closely related to modern horsetails. They reached their peak diversity in the Pennsylvanian and were major constituents of the lowland equatorial swamp forest ecosystems. The Cycadales are an ancient group of seed plants that can be traced back to the Pennsylvanian. Cycads have a stem or trunk that commonly looks like a large pineapple and composed of the coalesced bases of large leaves.  Today’s cycads are found in the tropical, subtropical and warm temperate regions of both the north and south hemispheres.

Lepidodendron (fossil tree) on display at the State Museum of Pennsylvania, From Wikimedia Commons

Lepidodendron was a tree-like (‘arborescent’) tropical plant, related to the lycopsids. The name of the genus comes from the Greek lepido, scale, and dendron, tree, because of the distinctive diamond shaped pattern of the bark. The name Lepidodendron is a generic name given to several fossil that clearly come from arborescent lycophytes but are difficult to assign to one species. Fossil remains indicate that some trees attained heights in excess of 40 m and were at least 2m in diameter at the base. They were dominant components of swamp ecosystems in the Carboniferous and frequently associated with Sigillaria, another extinct genus of tree-sized lycopsids from the Carboniferous Period. The absence of extensive branching and the structure of the leaf bases are the principal feature that distinguish Sigillaria from other lycopsids (Taylor et al, 2009). Sigillariostrobus is the name assigned to the reproductive organs or cones of Sigillaria. Unlike Lepidodendron cones, which were attached attached individually near the tip of the branches, Sigillaria cones occurred in clusters attached in certain places along the upper stem.

Tunguska forest (Photograph taken by Evgeny Krinov near the Hushmo river, 1929).

“The Colour Out of Space” is a short story written by  H. P. Lovecraft in 1927.  The story is set in the fictional town of Arkham, Massachusetts, where an unnamed narrator investigates a local area known as the “blasted heath”. Ammi Pierce, a local man, relates him the tragic story of a man named Nahum Gardner and how his life crumbled when a great rock fell out of the sky onto his farm. Within the meteorite there was a coloured globule impossible to describe that infected Gardner’s family, and spread across the property, killing all living things. It’s the first of Lovecraft’s major tales that combines horror and science fiction. The key question of the story of course is the meteorite. Although “the coloured globule” inside the meteorite has mutagenic properties we cannot define their nature. But as Lovecraft stated once, the things we fear most are those that we are unable to picture.

“The Colour Out of Space” was published nineteen year after the Tunguska Event. On the morning of June 30, 1908, eyewitnesses reported a large fireball crossing the sky above Tunguska in Siberia. The object entered Earth’s atmosphere traveling at a speed of about 33,500 miles per hour and released the energy equal to 185 Hiroshima bombs. The night skies glowed and the resulting seismic shockwave was registered with sensitive barometers as far away as England. In 1921, Leonid Kulik, the chief curator for the meteorite collection of the St. Petersburg museum led an expedition to Tunguska, but failed in the attempt to reach the area of the blast. Later, in 1927, a new expedition, again led by Kulik, discovered the huge area of leveled forest that marked the place of the Tunguska “meteorite” fall. At the time, Kulik mistook shallow depressions called thermokarst holes for many meteorites craters. However, he didn’t find remnants of the meteorite, and continued to explore the area until World War II. In the early 1930s, British astronomer Francis Whipple suggested that the Tunguska Event was caused by the core of a small comet, while Vladimir Vernadsky, suggested the cause was a lump of cosmic matter. (Rubtsov, 2009). More than a century later the cause of the Tunguska Event remains a mystery.

 

References:

Lovecraft, H. P, “At the Mountains of Madness”, Random House, 2005.

Lovecraft, H. P, “The Dreams in the Witch House and Other Weird Stories”, Penguin Books, 2004.

Joshi, S. T. (2001). A dreamer and a visionary: H.P. Lovecraft in his time. Liverpool University Press, 302.

LONG, J. (2003): Mountains of Madness – A Scientist’s Odyssey in Antarctica. Jospeh Henry Press, Washington: 252

N. Taylor, Edith L. Taylor, Michael Krings: “Paleobotany: The Biology and Evolution of Fossil Plants”. 2nd ed., Academic Press 2009.

Kathy Willis, Jennifer McElwain, The Evolution of Plants, Oxford University Press, 2013

 

 

Forgotten women of Paleontology: Margaret Benson

Margaret Jane Benson. Portrait in the Archives of Royal Holloway, University of London (RHC PH/282/13) From Fraser & Cleal, 2007

It is a truth universally acknowledged, that women has always work harder than men to gain some recognition. It was true in the 16th, and it’s true now. In “A Room of One’s Own”, Virginia Woolf explores the conflicts that a gifted woman must have felt during the Renaissance through the fictional character of Judith Shakespeare, the sister of William Shakespeare, and cites as obstacles the indifference of most of the world, the profusion of distractions, and the heaping up of various forms of discouragement. But not only in the Elizabethan times. In the Victorian times there was the common assumption that the female brain was too fragile to cope with mathematics, or science in general. In a letter from March 1860, Thomas Henry Huxley wrote to great geologist Charles Lyell FRS: “Five-sixths of women will stop in the doll stage of evolution, to be the stronghold of parsonism, the drag on civilisation, the degradation of every important pursuit in which they mix themselves – intrigues in politics and friponnes in science.”

Margaret Crosfield on a Geologists’ Association fieldtrip to Leith Hill with Professor Lapworth (From Burek and Malpas, 2007).

Women have played  various and extensive roles in the history of geology. Unfortunately, their contribution has not been widely recognised by the public or academic researchers. In the 18th and 19th centuries women’s access to science was limited, and science was usually a ‘hobby’ for intelligent wealthy women. Early female scientists were often born into influential families, like Grace Milne, the eldest child of Louis Falconer and sister of the eminent botanist and palaeontologist, Hugh Falconer; or Mary Lyell, the daughter of the geologist Leonard Horner. They collected fossils and mineral specimens, and were allowed to attend scientific lectures, but they were barred from membership in scientific societies. But by the first half of the 20th century, a third of British palaeobotanists working on Carboniferous plants were women. The most notable were  Margaret Benson, Emily Dix, and Marie Stopes.

Newnham began as a house for five students in Regent Street in Cambridge in 1871

Margaret Benson was born on the 20th October 1859 in London. Between 1878 and 1879, she studied at Newnham College Cambridge. After obtaining her BSc at University College London (UCL) in 1891, she started research on plant embryology.  In 1893, Benson was appointed head of the new Department of Botany at Royal Holloway College, the first woman in the United Kingdom to hold such a senior position in the field of botany. Her palaeobotanical research centred on the anatomy of reproductive structures, especially of Carboniferous pteridosperms and lycophytes. In 1904, she was among the first group of women to be elected as Fellows of the Linnean Society, and in 1912 she was appointed Professor of Botany at the University of London. Her major study on lycophyte fructifications was on the cones of the Sigillaria plant. She also speculated on the relationship between the Palaeozoic arborescent lycophytes and the Recent Isoetes, with the Triassic Pleuromeia as a possible intermediate form. She worked with ferns and cordaites and described a new species, Cordaites felicis. Benson’s work is characterized by careful description. One of her most important theoretical works concerns the phylogenetic significance of the sporangiophore in lycophytes, sphenophytes and ferns. After her retirement in 1922, she was encouraged by D. H. Scott to write up some of her earlier unpublished work on the root anatomy of the early Carboniferous pteridosperm Heterangium. She even continued with fieldwork when she was in her 70s. There is an unpublished manuscript in which she described a new fertile Rhacopteris that she collected from Teilia Quarry in North Wales in 1933. She died on 20th June 1936 at Highgate, Middlesex.

References:

H. E. Fraser and C. J. Cleal, The contribution of British women to Carboniferous palaeobotany during the first half of the 20th century, Geological Society, London, Special Publications, 281, 51-82, 1 January 2007, https://doi.org/10.1144/SP281.4

C. V. Burek (2007). The role of women in geological higher education – Bedford College, London (Catherine Raisin) and Newnham College, Cambridge, UK, Geological Society, London, Special Publications, eds Burek C. V., Higgs B. 281, pp 9–38

 

Molecular signatures of fossil leaves

Leaves of Ptilophyllum mueller, from Emmaville, New South Wales. Scale bars=10 mm (From McLoughlin et al., 2011)

The first plants colonized land approximately 450 million years ago. The transition from an exclusively aquatic to a terrestrial life style implied the evolution of a new set of morphological and physiological features. The most critical adaptive trait for survival during terrestrialization was the ability to retain water in increasingly dehydrating habitats. Consequently, the capacity to maintain a hydrophobic surface layer, or cuticle, over the surfaces of aerial organs was arguably one of the most important innovations in the history of plant evolution.

Spores, pollen and leaf cuticles, are among the most resilient organic structures in the geological record. These components may retain some phylogenetically unique signals, not only in well-preserved fossils, but also in remains with a high level of diagenetic maturity.

Ginkgo biloba, Eocene fossil leaf from the Tranquille Shale of MacAbee, British Columbia, Canada (From Wikipedia Commons)

Generally, the cuticle is divided into two major structural constituents: cutin and cutan. The fatty acid polyesters which constitute cutin, gives the cuticle considerable resistance to biodegradation. Cutan is a non-ester and non-hydrolyzable matrix of aliphatic compounds linked by ether bonds, which remain after cutin hydrolysis. Additionally, the surface of the cuticle may be covered by various long-chain hydrophobic waxes. All these components  favours the survival of the cuticle in many fossil plants, and can be used to resolve the stratigraphic ranges and relationships of extinct plants.

Data from infrared spectroscopy of modern plant cuticles, have been used successfully to support and clarify the species-level taxonomy of extant plants, for example, in Camellia and angiosperm pollen. Using infrared spectroscopy and statistical analysis, researchers at Lund University, the Swedish Museum of Natural History in Stockholm, and Vilnius University, analysed a selection of fossil Cycadales, Ginkgoales and conifers. The team obtained two major groups in the dendrogram of infrared spectra. One branch unites podocarpacean and araucariacean conifers (excluding the Jurassic Allocladus). A relationship consistent with all modern phylogenetic analyses of gymnosperm. The second branch unites a broad range of gymnosperms. Within this branch, Bennettitales (Otozamites and Pterophyllum) form a well-defined group in association with Ptilozamites and Nilssoniales. This cluster is linked to a group incorporating Cycadales on one sub-branch, and Leptostrobales, Ginkgoales and the putative araucariacean Jurassic conifer Allocladus on a second sub-branch.

 

Dendrogram based on HCA of infrared absorption spectra of an expanded group of 13 fossil gymnosperm taxa (From Vajda et al., 2017)

Early palaeobotanical studies generally linked Bennettitales to Cycadales, but more recent anatomical studies and cladistic analyses have indicated that Bennettitales are not closely related to Cycadales. By contrast, Bennettitales, Nilssoniales and Ptilozamites are grouped closely. Additionally,  the systematic position of Allocladus within Araucariaceae should be reassessed based on its close association with Ginkgo in the cluster analysis of infrared spectra.

References:

Vivi Vajda, Milda Pucetaite, Stephen McLoughlin, Anders Engdahl, Jimmy Heimdal, Per Uvdal. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nature Ecology & Evolution, 2017; DOI: 10.1038/s41559-017-0224-5

Stephen McLoughlinRaymond J. Carpenter, and Christian Pott, Ptilophyllum muelleri (Ettingsh.) comb. nov. from the Oligocene of Australia: Last of the Bennettitales?, International Journal of Plant Sciences 2011 172:4574-585, DOI: 10.1086/658920

Terrestrial floras at the Triassic-Jurassic Boundary in Europe.

Proportions of range-through diversities of higher taxonomic categories of microfloral elements over the Middle Triassic–Early Jurassic interval (From Barbacka et al., 2017)

Over the last 3 decades, mass extinction events  have become the subject of increasingly detailed and multidisciplinary investigations. Most of those events are associated with global warming and proximal killers such as marine anoxia. Volcanogenic-atmospheric kill mechanisms include ocean acidification, toxic metal poisoning, acid rain, increased UV-B radiation, volcanic darkness, cooling and photosynthetic shutdown. The mass extinction at the Triassic-Jurassic Boundary (TJB) has been linked to the eruption of the Central Atlantic Magmatic Province (CAMP), a large igneous province emplaced during the initial rifting of Pangea. Another theory is that a huge impact was the trigger of the extinction event. At least two craters impact were reported by the end of the Triassic. The Manicouagan Impact crater in the Côte-Nord region of Québec, Canada was caused by the impact of a 5km diameter asteroid, and it was suggested that could be part of a multiple impact event which also formed the Rochechouart crater in France, Saint Martin crater in Canada, Obolon crater in Ukraine, and the Red Wing crater in USA (Spray et al., 1998).

Photographs of some Rhaetian–Hettangian spores and pollen from the Danish Basin (From Lindström, 2015)

Most mammal-like reptiles and large amphibians disappeared, as well as early dinosaur groups. In the oceans, this event eliminated conodonts and nearly annihilated corals, ammonites, brachiopods and bivalves. In the Southern Hemisphere, the vegetation turnover consisted in the replacement to Alisporites (corystosperm)-dominated assemblage to a Classopollis (cheirolepidiacean)-dominated one. But there was no mass extinction of European terrestrial plants during the TJB. The majority of genera and a high percentage of species still existed in its later stages, and replacement seems to have been local, explainable as a typical reaction to an environmental disturbance. In Greenland, for example, the replacement of Triassic wide-leaved forms with Jurassic narrow-leaved forms was linked to the reaction of plants to increased wildfire. In Sweden, wildfire in the late Rhaetian and early Hettangian caused large-scale burning of conifer forests and ferns, and the appearance of new swampy vegetation. In Austria and the United Kingdom, conifers and seed ferns were replaced by ferns, club mosses and liverworts. In Hungary, there was a high spike of ferns and conifers at the TJB, followed by a sudden decrease in the number of ferns along with an increasing share of swamp-inhabiting conifers.

Although certain taxa/families indeed became extinct by the end of the Triassic (e.g. Peltaspermales), the floral changes across Europe were rather a consequence of local changes in topography.

References:

Maria Barbacka, Grzegorz Pacyna, Ádam T. Kocsis, Agata Jarzynka, Jadwiga Ziaja, Emese Bodor , Changes in terrestrial floras at the TriassicJurassic Boundary in Europe, Palaeogeography, Palaeoclimatology, Palaeoecology (2017), doi: 10.1016/j.palaeo.2017.05.024

S. Lindström, Palynofloral patterns of terrestrial ecosystem change during the end-Triassic event — a review, Geol. Mag., 1–23 (2015) https://doi.org/10.1017/S0016756815000552

Van de Schootbrugge, B., Quan, T.M., Lindström, S., Püttmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Röhling, H.-G., Richoz, S., Rosenthal, Y., Falkowski, P. G., 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nat. Geosci. 2, 589–594. doi: 10.1038/NGEO577.

N.R. Bonis, W.M. Kürschner, Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary, Paleobiology, 8 (2) (2012), pp. 240–264 https://doi.org/10.1666/09071.1

Forgotten women of Paleontology: Emily Dix

 

Dr Emily Dix and her assistant Miss Elsie White.

Dr Emily Dix and her assistant Miss Elsie White.

In the 18th and 19th centuries women’s access to science was limited, and science was usually a ‘hobby’ for intelligent wealthy women. It was common for male scientists to have women assistants, often their own wives and daughters. But by the first half of the 20th century, a third of British palaeobotanists working on Carboniferous plants were women. The most notable were  Margaret Benson, Emily Dix, and Marie Stopes.

Emily Dix was born on 21 May 1904 in Penclawdd, in the beautiful area of the Gower Peninsula. At age 18, she gained the Central Welsh Board Higher Certificate in history, botany and geography, with distinctions in both history and botany. In 1925, she graduated with first class honours in Geology at the University College Swansea. After graduation, Emily continued at Swansea to research the geology of the western part of the South Wales Coalfield. Her work was supervised by Arthur E. Trueman, Professor of Geology at Swansea, and a pioneer in developing stratigraphical theory. Trueman realized that the only accurate way to use fossils for correlation was to divide the stratigraphical succession into biozones defined exclusively by the assemblages of species present, independently of the lithology in which they were found. Trueman’s main interest were  non-marine bivalves, so Emily’s early work was on the non-marine bivalves of the South Wales Coalfield.

Emily Dix during the 2nd International Carboniferous Congress in 1935 (From Burek and Cleal, 2005)

Emily Dix during the 2nd International Carboniferous Congress in 1935 (From Burek and Cleal, 2005)

Emily initially studied all aspects of the Late Carboniferous biotas in South Wales, but soon, she realized that plant fossils also had considerable biostratigraphical potential. Although, Paul Bertrand developed macrofloral biozones for the French coalfields in 1914, Emily used stratigraphical range charts for the first time in paleobotany recognising the need to separate biostratigraphy from lithostratigraphy. In 1926 Emily was awarded an MSc based on her Gwendraeth Valley work: ‘The Palaeontology of the Lower Coal Series of Carmarthen and the Correlation of the Coal Measures in the Western Portion of the South Wales Coalfield’.  In 1929 she was elected a fellow of the Geological Society, and a year later she was appointed Lecturer in Palaeontology at Bedford College in London, a position that she held for the rest of her working life. The same year, she attended the International Botanical Congress in Cambridge where she met W. Gothan, P. Bertrand, W. J. Jongmans and A. Renier, leaders in Upper Carboniferous palaeobotany at the time. Five years later, she attended the Second International Carboniferous Congress in Heerlen (The Netherlands) and she delivered papers on Carboniferous biostratigraphy. In 1936, Emily was invited to become the only female on an 11-man discussion group of the British Association for the Advancement of Science on Coal Measures correlation. She was clearly at the international forefront of the field.

Emily Dix in the Auvergne 1936 (seated fourth from right, see white arrow). From Burek and Cleal, 2005.

Emily Dix in the Auvergne 1936 (seated fourth from right, see white arrow). From Burek and Cleal, 2005.

At the start of the World War II, she was evacuated to Cambridge, along with the rest of Bedford College Geology Department. She lost a lot of valuable literature and other records in a London Blitz in May 1941. Fortunately, much of her collection of fossils survived.

At the end of the war, Emily suffered a mental breakdown. She was moved to a mental hospital run by the Quakers in the City of York. That was the end of her scientific career. She died in Swansea on 31 December 1972.

It was not until the late 1970s that her techniques were used again in Britain. Elsewhere in Europe, her approaches were adopted and can be seen in many of the papers presented at the International Carboniferous Congresses held at Heerlen during the 1950s and early 1960s.

References:

Burek, C. V. & Cleal, C. J. (2005) The life and work of Emily Dix (1904-1972). In: Bowden, A. J., Burek, C. V. & Wilding, R (ed.) History of palaeobotany: selected essays. Geological Society of London, Special Publication, 241, 181-196

Burek, C. V. (2005). Emily Dix, palaeobotanist – a promising career cut short. Geology Today, 21(4), 144-145

A palaeobotanical perspective on the Permian extinction.

 

Leaf bank of Glossopteris leaves (Adapted from Mcloughlin, 2012)

Leaf bank of Glossopteris leaves (Adapted from Mcloughlin, 2012)

The fossil record indicates that more than 95% of all species that ever lived are now extinct. Occasionally, extinction events reach a global scale with many species of all ecological types dying out in a near geological instant. These are mass extinctions. They were originally identified in the marine fossil record and have been interpreted as a result of catastrophic events or major environmental changes that occurred too rapidly for organisms to adapt. Mass extinctions are probably due to a set of different possible causes like basaltic super-eruptions, impacts of asteroids, global climate changes, or continental drift. A central question in the understanding of mass extinctions is whether the extinction was a sudden or gradual event. This question may be addressed by examining the pattern of last occurrences of fossil species in a stratigraphic section.

Jack Sepkoski and David M. Raup identified five major extinction events in Earth’s history: at the end of the Ordovician period, Late Devonian, End Permian, End Triassic and the End Cretaceous. The most recently identified mass extinction occurred during the Middle Permian, about  262 million years ago, and it was first recognised in the marine realm as a turnover among foraminifera, with fusulinaceans among the principal casualties.

Sin título

Total diversity patterns of continental diversity (solid line) and marine diversity (dotted line) at the family level. Arrows indicate the mass extinction events. (From Cascales-Miñana and Cleal 2015)

Extinction dynamics in the marine and terrestrial biotas followed different trajectories, and only the Permo-Triassic event coincided with a clear and abrupt diminution of both realms. Moreover, analysis of the paleobotanical record has suggested that plants may have suffered an additional extinction event, that is not reflected significantly in the marine realm, at the Carboniferous–Permian boundary. Evidence also suggests that  terrestrial environments suffered a single global pulse of extinction in the latest Permian, affecting both the fauna and flora (Cascales-Miñana and Cleal 2015).

During the end-Permian Event, the woody gymnosperm vegetation (cordaitaleans and glossopterids) were replaced by spore-producing plants (mainly lycophytes) before the typical Mesozoic woody vegetation evolved. The palynological record suggests that wooded terrestrial ecosystems took four to five million years to reform stable ecosystems, while spore-producing lycopsids had an important ecological role in the post-extinction interval. A key factor for plant resilience is the time-scale: if the duration of the ecological disruption did not exceed that of the viability of seeds and spores, those plant taxa have the potential to recover (Traverse, 1988).

 

References:

Borja Cascales-Miñana, José B. Diez, Philippe Gerrienne & Christopher J.Cleal (2015): A palaeobotanical perspective on the great end-Permian biotic crisis, HistoricalBiology, DOI: 10.1080/08912963.2015.1103237

Aberhan M. 2014. Mass extinctions: ecological diversity maintained. NatGeosci. 7:171–172.

Cascales-Miñana B, Cleal CJ. 2014. The plant fossil record reflects just two great extinction events. Terra Nova. 26(3):195–200.

Darwin and the flowering plant evolution in South America.

pollen

Retimonocolpites sp. (Adapted from Llorens and Loinaze, 2015)

Charles Darwin’s fascination and frustration with the evolutionary events associated with the origin and early radiation of flowering plants are legendary. In a letter to Oswald Heer, a famous Swiss botanist, and paleontologist, Darwin wrote: “the sudden appearance of so many Dicotyledons in the Upper Chalk appears to me a most perplexing phenomenon to all who believe in any form of evolution, especially to those who believe in extremely gradual evolution, to which view I know that you are strongly opposed”. Heer discussed about the early angiosperm fossil record with Darwin, in a letter dated 1 March 1875: “if we say that the Dicotyledons begin with the Upper Cretaceous, we must still concede that this section of the vegetable kingdom, which forms the bulk of modern vegetation, appears relatively late and that, in geological terms, it underwent a substantial transformation within a brief period of time.” 

Darwin’s defense of a gradualist perspective led him to suggest that prior to the Cretaceous record of flowering plants, angiosperms had slowly evolved and diversified on a remote landmass. On 22 July 1879, in a letter to Joseph Dalton Hooker, Darwin refers to the early evolution of flowering plants as an “abominable mystery”. Nearing the end of his life, he wrote to Hooker another letter about a lost fossil record in the earliest phases of angiosperm diversification:  “Nothing is more extraordinary in the history of the Vegetable Kingdom, as it seems to me, than the apparently very sudden or abrupt development of the higher plants. I have sometimes speculated whether there did not exist somewhere during long ages an extremely isolated continent, perhaps near the South Pole.”

Letter from Charles Darwin to Joseph Dalton Hooker, written 22 July 1879 (provenance: Cambridge University Library DAR 95: 485–488)

Letter from Charles Darwin to Joseph Dalton Hooker, written 22 July 1879 (provenance: Cambridge University Library DAR 95: 485–488)

While the oldest records of the different groups of angiosperms are still in discussion, the outcrops of the Baquero Group, located in Argentinean Patagonia, contain one of the richest and most diverse Early Cretaceous floras in the Southern Hemisphere. The unit comprises three formations: Anfiteatro de Tico, Bajo Tigre and Punta del Barco. The first reports of angiosperm remains for the Anfiteatro de Tico Formation were made in 1967. The dominant types are Clavatipollenites, and Retimonocolpites.

Pollen grains  could enter into the fossil record by falling directly into swamps or lakes, or being washed into them or into the rivers and seas. The ones which are not buried in reducing sediments will tend to become oxidized and be destroyed. They reflects the ecology of their parent plants and their habitats and provide a continuous record of their evolutionary history. Gymnosperms pollen often is saccate (grains with two or three air sacs attached to the central body), while Angiosperm pollen shows more variation and covers a multitude of combinations of features: they could be  in groups of four (tetrads),  in pairs (dyads),  or single (monads). The individual grains can be inaperturate, or have one or more pores, or slit-like apertures or colpi (monocolpate, tricolpate).

pollen

Clavatipollenites sp. SEM (Adapted from Archangelsky 2013)

Clavatipollenites pollen grains are interpreted as related to the modern family Chloranthaceae. The genus was established by Couper for dispersed monosulcate pollen grains recovered from the Early Cretaceous of Britain. Currently, the genus has a very broad definition. The genus Retimonocolpites include elongated to subcircular semitectate, columellate and microreticulate pollen grains with well defined monocolpate aperture (Llorens and Loinaze, 2015). The new species Jusinghipollisticoensis sp. nov. represents one of the oldest records of trichotomosulcate, and extends the geographical distribution of Early Cretaceous trichotomosulcate pollen grains to southern South America.

The data also indicates strong similarities between the Baquero Group assemblages and other coeval units from Argentina, Australia and United States.

References:

M. Llorens, V.S. Perez Loinaze, Late Aptian angiosperm pollen grains from Patagonia: Earliest steps in flowering plant evolution at middle latitudes in southern South America, Cretaceous Research 57 (2016) 66-78

Archangelsky, S.,et al. (2009). Early angiosperm diversification: evidence from southern South America. Cretaceous Research, 30, 1073-1082.

Doyle, J. A., & Endress, P. K. (2014). Integrating Early Cretaceous fossils into the phylogeny of living Angiosperms: ANITA. Lines and relatives of Chloranthaceae. International Journal of Plant Sciences, 175, 555-560.