Brief history of the Ocean Acidification through time: an update

Corals one of the most vulnerable creatures in the ocean. Photo Credit: Katharina Fabricius/Australian Institute of Marine Science

About one third of the carbon dioxide released by anthropogenic activity is absorbed by the oceans. Once dissolved in seawater, most of the CO2 is transported into deep waters via thermohaline circulation and the biological pump. But a smaller fraction of the CO2, forms carbonic acid and causes a decline in pH in the surface ocean. This phenomenon is called ocean acidification, and is occurring at a rate faster than at any time in the last 300 million years.

Acidification affects the biogeochemical dynamics of calcium carbonate, organic carbon, nitrogen, and phosphorus in the ocean and interferes with a range of processes, including growth, calcification, development, reproduction and behaviour in a wide range of marine organisms like planktonic coccolithophores, foraminifera, pteropods and other molluscs,  echinoderms, corals, and coralline algae.

The pH within the ocean surface has decreased ~0.1 pH units since the industrial revolution and is predicted to decrease an additional 0.2 – 0.3 units by the end of the century. An eight-year study carried out by the Biological Impacts of Ocean Acidification group (Bioacid), with the support of the German government, has contributed to quantifying the effects of ocean acidification on marine organisms and their habitats. Among the many effects of ocean acidification on marine organisms are including: decreased rate of skeletal growth in reef-building corals, reduced ability to maintain a protective shell among free-swimming zooplankton, and reduced survival of larval marine species, including commercial fish and shellfish. Even worse, the effects of acidification can intensify the effects of global warming, in a dangerous feedback loop.

Coccolithophores exposed to differing levels of acidity. Adapted by Macmillan Publishers Ltd: Nature Publishing Group, Riebesell, U., et al., Nature 407, 2000.

The geologic record of ocean acidification provide valuable insights into potential biotic impacts and time scales of recovery.  Rapid additions of carbon dioxide during extreme events in Earth history, including the end-Permian mass extinction (252 million years ago) and the Paleocene-Eocene Thermal Maximum (PETM, 56 million years ago) may have driven surface waters to undersaturation. But, there’s  no perfect analog for our present crisis, because we are living in an “ice house” that started 34 million years ago  with the growth of ice sheets on Antarctica, and this cases corresponded to events initiated during “hot house” (greenhouse) intervals of Earth history.

The end-Permian extinction is the most severe biotic crisis in the fossil record, with as much as 95% of the marine animal species and a similarly high proportion of terrestrial plants and animals going extinct . This great crisis ocurred about 252 million years ago (Ma) during an episode of global warming. The cause or causes of the Permian extinction remain a mystery but new data indicates that the extinction had a duration of 60,000 years and may be linked to massive volcanic eruptions from the Siberian Traps. The same study found evidence that 10,000 years before the die-off, the ocean experienced a pulse of light carbon that most likely led to a spike of carbon dioxide in the atmosphere. This could have led to ocean acidification, warmer water temperatures that effectively killed marine life.

Taxonomic variation in effects of ocean acidification (From Kroeker et al. 2010)

The early Aptian Oceanic Anoxic Event (120 million years ago) was an interval of dramatic change in climate and ocean circulation. The cause of this event was the eruption of the Ontong Java Plateau in the western Pacific, wich led to a major increase in atmospheric pCO2 and ocean acidification. This event was characterized by the occurrence of organic-carbon-rich sediments on a global basis along with evidence for warming and dramatic change in nanoplankton assemblages. Several oceanic anoxic events (OAEs) are documented in Cretaceous strata in the Canadian Western Interior Sea.

The Paleocene-Eocene Thermal Maximum (PETM; 55.8 million years ago) was a short-lived (~ 200,000 years) global warming event. Temperatures increased by 5-9°C. It was marked by the largest deep-sea mass extinction among calcareous benthic foraminifera in the last 93 million years. Similarly, planktonic foraminifer communities at low and high latitudes show reductions in diversity. The PETM is also associated with dramatic changes among the calcareous plankton,characterized by the appearance of transient nanoplankton taxa of heavily calcified forms of Rhomboaster spp., Discoaster araneus, and D. anartios as well as Coccolithus bownii, a more delicate form.

The current rate of the anthropogenic carbon input  is probably greater than during the PETM, causing a more severe decline in ocean pH and saturation state. Also the biotic consequences of the PETM were fairly minor, while the current rate of species extinction is already 100–1000 times higher than would be considered natural. This underlines the urgency for immediate action on global carbon emission reductions.

References:

David A. Hutchins & Feixue Fu, Microorganisms and ocean global change, Nature Microbiology 2, Article number: 17058 (2017) doi:10.1038/nmicrobiol.2017.58 

Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107, http://dx.doi.org/10.5670/oceanog.2009.100

Parker, L. M. et al. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors. Biology Letters 13 (2017). DOI: 10.1098/rsbl.2016.0798

Kristy J. Kroeker, Rebecca L. Kordas, Ryan N. Crim, Gerald G. Singh, Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecology Letters (2010) 13: 1419–1434
DOI: 10.1111/j.1461-0248.2010.01518.x

 

Advertisements

A Tale of Two Exctintions.

The permian triassic boundary at Meishan, China (Photo: Shuzhong Shen)

The Permian Triassic boundary at Meishan, China (Photo: Shuzhong Shen)

Extinction is the ultimate fate of all species. The fossil record indicates that more than 95% of all species that ever lived are now extinct. Over the last 3 decades, mass extinction events  have become the subject of increasingly detailed and multidisciplinary investigations. In 1982, Jack Sepkoski and David M. Raup identified five major extinction events in Earth’s history: at the end of the Ordovician period, Late Devonian, End Permian, End Triassic and the End Cretaceous. These five events are know as the Big Five.

The end-Permian extinction is the most severe biotic crisis in the fossil record, with as much as 95% of the marine animal species and a similarly high proportion of terrestrial plants and animals going extinct . This great crisis occurred 252 million years ago (Ma) during an episode of global warming. The End-Triassic Extinction  is probably the least understood of the big five. Most mammal-like reptiles and large amphibians disappeared, as well as early dinosaur groups. In the oceans, this event eliminated conodonts and nearly annihilated corals, ammonites, brachiopods and bivalves. Although it’s almost impossible briefly summarize all the changes in biodiversity associated with both extinction events, we can describe their broad trends.

 

Flow chart summarizing proposed cause-and-effect relationships during the end-Permian extinction (From Bond and Wignall, 2014)

Flow chart summarizing proposed cause-and-effect relationships during the end-Permian extinction (From Bond and Wignall, 2014)

Both extinction events are commonly linked to the emplacement of the large igneous provinces of the Siberian Traps and the Central Atlantic Magmatic Province. Massive volcanic eruptions with lava flows, released large quantities of sulphur dioxide, carbon dioxide, thermogenic methane and large amounts of HF, HCl, halocarbons and toxic aromatics and heavy metals into the atmosphere. Furthermore, volcanism contribute gases to the atmosphere, such as Cl, F, and CH3Cl from coal combustion, that suppress ozone formation. Acid rain likely had an impact on freshwater ecosystems and may have triggered forest dieback. Mutagenesis observed in the Lower Triassic herbaceous lycopsid Isoetales has been attributed to increased levels of UV-radiation. Charcoal records point to forest fires as a common denominator during both events. Forest dieback was accompanied by the proliferation of opportunists and pioneers, including ferns and fern allies. Moreover, both events led to major schisms in the dominant terrestrial herbivores  and apex predators, including the late Permian extinction of the pariaeosaurs and many dicynodonts and the end-Triassic loss of crurotarsans (van de Schootbrugge and Wignall, 2016).

Aberrant pollen and spores from the end-Triassic extinction interval (scale bars are 20 μm). (a) Ricciisporites tuberculatus from the uppermost Rhaetian deposits at Northern Ireland (adapted from van de Schootbrugge and Wignall, 2016)

Aberrant pollen and spores from the end-Triassic extinction interval (scale bars are 20 μm). (a) Ricciisporites
tuberculatus and b) Kraeuselisporites reissingerii (adapted from van de Schootbrugge and Wignall, 2016)

During the end-Permian Event, the woody gymnosperm vegetation (cordaitaleans and glossopterids) were replaced by spore-producing plants (mainly lycophytes) before the typical Mesozoic woody vegetation evolved. The palynological record suggests that wooded terrestrial ecosystems took four to five million years to reform stable ecosystems, while spore-producing lycopsids had an important ecological role in the post-extinction interval. A key factor for plant resilience is the time-scale: if the duration of the ecological disruption did not exceed that of the viability of seeds and spores, those plant taxa have the potential to recover (Traverse, 1988). Palynological records from across Europe provide evidence for complete loss of tree-bearing vegetation reflected in a strong decline in pollen abundance at the end of the Triassic. In the Southern Hemisphere, the vegetation turnover consisted in the replacement to Alisporites (corystosperm)-dominated assemblage to a Classopollis (cheirolepidiacean)-dominated one.

Comparison of extinction rates for calcareous organisms during the end-Permian and end-Triassic extinction event (from van de Schootbrugge and Wignall, 2016)

Comparison of extinction rates for calcareous organisms during the end-Permian and end-Triassic extinction event (from van de Schootbrugge and Wignall, 2016)

Rapid additions of carbon dioxide during extreme events may have driven surface waters to undersaturation. Acidification affects the biogeochemical dynamics of calcium carbonate, organic carbon, nitrogen, and phosphorus in the ocean and interferes with a range of processes, including growth, calcification, development, reproduction and behaviour in a wide range of marine organisms like foraminifera, planktonic coccolithophores, pteropods and other molluscs,  echinoderms, corals, and coralline algae. Both extinction events led to near-annihilation of cnidarian clades and other taxa responsible for reef construction, resulting in ‘reef gaps’ that lasted millions of years. Black shales deposited across both extinction events also contain increased concentrations of the biomarker isorenieratane, a pigment from green sulphur bacteria, suggesting that the photic zone underwent prolonged periods of high concentrations of hydrogen sulphide. Following the end-Triassic extinction, Early Jurassic shallow seas witnessed recurrent euxinia over a time span of 25 million years, culminating in the Toarcian Oceanic Anoxic Event.

 

References:

BAS VAN DE SCHOOTBRUGGE and PAUL B. WIGNALL (2016). A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine, 153, pp 332-354. doi:10.1017/S0016756815000643.

BACHAN, A. & PAYNE, J. L. 2015. Modelling the impact of pulsed CAMP volcanism on pCO2 and δ13C across the Triassic-Jurassic transition. Geological Magazine, published online

Retallack, G.J. 2013. Permian and Triassic greenhouse crises. Gondwana Research 24:90–103.

 

Ocean acidification and the end-Permian mass extinction

 

Permian Seafloor Photograph by University of Michigan Exhibit Museum of Natural History.

Permian Seafloor
Photograph by University of Michigan Exhibit Museum of Natural History.

About one third of the carbon dioxide released by anthropogenic activity is absorbed by the oceans. But the CO2 uptake lowers the pH and alters the chemical balance of the oceans. This phenomenon is called ocean acidification, and is occurring at a rate faster than at any time in the last 300 million years (Gillings, 2014; Hönisch et al. 2012). Acidification affects the biogeochemical dynamics of calcium carbonate, organic carbon, nitrogen, and phosphorus in the ocean and interferes with a range of processes, including growth, calcification, development, reproduction and behaviour in a wide range of marine organisms like planktonic coccolithophores, foraminifera, pteropods and other molluscs,  echinoderms, corals, and coralline algae. Rapid additions of carbon dioxide during extreme events in Earth history, including the end-Permian mass extinction (252 million years ago) and the Paleocene-Eocene Thermal Maximum (PETM, 56 million years ago) may have driven surface waters to undersaturation.

Flow chart summarizing proposed cause-and-effect relationships during the end-Permian extinction (From Bond and Wignall, 2014)

Flow chart summarizing proposed cause-and-effect relationships during the end-Permian extinction (From Bond and Wignall, 2014)

The end-Permian extinction is the most severe biotic crisis in the fossil record, with as much as 95% of the marine animal species and a similarly high proportion of terrestrial plants and animals going extinct . This great crisis occurred about 252 million years ago (Ma) during an episode of global warming.  The cause or causes of the Permian extinction remain a mystery but new data indicates that the extinction had a duration of 60,000 years and may be linked to massive volcanic eruptions from the Siberian Traps. The same study found evidence that 10,000 years before the die-off, the ocean experienced a pulse of light carbon that most likely led to a spike of carbon dioxide in the atmosphere. Volcanism and coal burning also contribute gases to the atmosphere, such as Cl, F, and CH3Cl from coal combustion, that suppress ozone formation.

Image that shows field work in the United Arab Emirates. Credit: D. Astratti

Image that shows field work in the United Arab Emirates. Credit: D. Astratti

Ocean acidification in the geological record, is often inferred from a decrease in the accumulation and preservation of CaCO3 in marine sediments, potentially indicated by an increased degree of fragmentation of foraminiferal shells. But, recently, a variety of trace-element and isotopic tools have become available to infer past seawater carbonate chemistry. The boron isotope composition of carbonate samples obtained from a shallow-marine platform section at Wadi Bih on the Musandam Peninsula, United Arab Emirates, allowed to reconstruct seawater pH values and atmospheric pCO2 concentrations and obtain for the very first time, direct evidence of ocean acidification in the Permo-Triassic boundary. The evidence indicates that the first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota (Clarkson et al, 2015).

The increasing evidence that the end-Permian mass extinction was precipitated by rapid release of CO2 into Earth’s atmosphere is a valuable reminder for an immediate action on global carbon emission reductions.

 

References:

Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET. Ocean acidification and the Permo-Triassic mass extinction. Science, 2015 DOI: 10.1126/science.aaa0193

Feng, Q., Algeo, T.J., Evolution of oceanic redox conditions during the Permo-Triassic transition: Evidence from deepwater radiolarian facies, Earth-Sci. Rev. (2014), http://dx.doi.org/10.1016/j.earscirev.2013.12.003

Hönisch, A. Ridgwell, D. N. Schmidt, E. Thomas, S. J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R. C. Martindale, S. E. Greene, W. Kiessling, J. Ries, J. C. Zachos, D. L. Royer, S. Barker, T. M. Marchitto Jr., R. Moyer, C. Pelejero, P. Ziveri, G. L. Foster, B. Williams, The geological record of ocean acidification. Science 335, 1058–1063 (2012).

Kump, L.R., T.J. Bralower, and A. Ridgwell (2009)  Ocean acidification in deep time. Oceanography 22(4):94–107, http://dx.doi.org/10.5670/oceanog.2009.100

Seth D. Burgess, Samuel Bowring, and Shu-zhong Shen, High-precision timeline for Earth’s most severe extinction, PNAS 2014, doi:10.1073/pnas.1317692111

 

Response of marine ecosystems to the PETM.

Biotic change among foraminifera during and after the PETM. (From Speijer et al., 2012)

Biotic change during and after the PETM. (From Speijer et al., 2012)

The Paleocene-Eocene Thermal Maximum (PETM; 55.8 million years ago), was a short-lived (~ 200,000 years) global warming event attributed to a rapid rise in the concentration of greenhouse gases in the atmosphere. It was suggested that this warming was initiated by the melting of methane hydrates on the seafloor and permafrost at high latitudes. During the PETM, around 5 billion tons of CO2 was released into the atmosphere per year, and temperatures increased by 5 – 9°C. This event was accompanied by other large-scale changes in the climate system, for example, the patterns of atmospheric circulation, vapor transport, precipitation, intermediate and deep-sea circulation and a rise in global sea level.

Dinoflagellate cysts: Adnatosphaeridium robustum and Apectodinium augustum (From Sluijs and Brinkhuis, 2009)

Dinoflagellate cysts: Adnatosphaeridium robustum and Apectodinium augustum (From Sluijs and Brinkhuis, 2009)

The rapid warming at the beginning of the Eocene has been inferred from the widespread distribution of dinoflagellate cysts. One taxon in particularly, Apectodinium, spans the entire carbon isotope excursion (CIE) of the PETM. The distribution of Apectodinium is linked to high temperatures and increased food availability.

The most disruptive impact during the PETM was likely the exceptional ocean acidification and the rise of the calcite dissolution depth, affecting marine organisms with calcareous shells (Zachos et al., 2005). When CO2 dissolves in seawater, it produce carbonic acid. The carbonic acid dissociates in the water releasing hydrogen ions and bicarbonate. The formation of bicarbonate then removes carbonate ions from the water, making them less available for use by organisms.

Nannofossil abundance changes during the PETM. (From Kump, 2009.)

Nannofossil abundance changes during the PETM. (From Kump, 2009.)

The PETM onset is also marked by the largest deep-sea mass extinction among calcareous benthic foraminifera (including calcareous agglutinated taxa) in the last 93 million years. Similarly, planktonic foraminifera communities at low and high latitudes show reductions in diversity, while larger foraminifera are the most common constituents of late Paleocene–early Eocene carbonate platforms.

The response of most marine invertebrates (mollusks, echinoderms, brachiopods) to paleoclimatic change during the PETM is poorly documented.

Coccolithus bownii and Toweius pertusus

Coccolithus bownii and Toweius pertusus (Adapted from Bown and Pearson, 2009)

The PETM is also associated with dramatic changes among the calcareous plankton,characterized by the appearance of transient nanoplankton taxa of heavily calcified forms of Rhomboaster spp., Discoaster araneus, and D. anartios as well as Coccolithus bownii, a more delicate form.

The combination of global warming and the release of large amounts of carbon to the ocean-atmosphere system during the PETM has encouraged analogies to be drawn with modern anthropogenic climate change. The current rate of the anthropogenic carbon input  is probably greater than during the PETM, causing a more severe decline in ocean pH and saturation state. Also the biotic consequences of the PETM were fairly minor, while the current rate of species extinction is already 100–1000 times higher than would be considered natural. This underlines the urgency for immediate action on global carbon emission reductions.

Comparison of the effects of anthropogenic emissions (total of 5000 Pg C over 500 years) and PETM carbon release (3000 Pg C over 6 kyr) on the surface ocean saturation state of calcite. From Zeebe, 2013

Comparison of the effects of anthropogenic emissions (total of 5000 Pg C over 500 years) and PETM carbon release (3000 Pg C over 6 kyr) on the surface ocean saturation state of calcite. From Zeebe, 2013

 

References:

Maria Rose Petrizzo, The onset of the Paleocene–Eocene Thermal Maximum (PETM) at Sites 1209 and 1210 (Shatsky Rise, Pacific Ocean) as recorded by planktonic foraminifera, Marine Micropaleontology, Volume 63, Issues 3–4, 13 June 2007, Pages 187-200

Zeebe RE and Zachos JC. 2013 Long-term legacy ofmassive carbon input to the Earth system: Anthropocene versus Eocene. Phil Trans R Soc A 371: 20120006. http://dx.doi.org/10.1098/rsta.2012.0006.

Wright JD, Schaller MF (2013) Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. Proc Natl Acad Sci USA 110(40):15908–15913.

Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107, http://dx.doi.org/10.5670/oceanog.2009.100

Raffi, I. and de Bernardi, B.: Response of calcareous nannofossils to the Paleocene-Eocene Thermal Maximum: observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge – SW Atlantic), Mar. Micropaleontol., 69, 119–138, 2008.

Robert P. SPEIJER, Christian SCHEIBNER, Peter STASSEN & Abdel-Mohsen M. MORSI; Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM), Austrian Journal of Earth Sciences. Vienna. 2012. Volume 105/1.

The Great Acceleration.

 

Iron and Coal, 1855–60, by William Bell Scott illustrates the central place of coal and iron working in the industrial revolution (From Wikimedia Commons)

Iron and Coal, 1855–60, by William Bell Scott illustrates the central place of coal and iron working in the industrial revolution (From Wikimedia Commons)

During a meeting of the International Geosphere-Biosphere Programme (IGBP) celebrated in Mexico, in 2000, the Vice-Chair of IGBP, Paul Crutzen, proposed the use of the term Anthropocene to designate the last three centuries of human domination of earth’s ecosystems, and to mark the end of the current Holocene geological epoch. He suggested that the start date of the Anthropocene must be placed near the end of the 18th century, about the time that the industrial revolution began, and noted that such a start date would coincide with the invention of the steam engine by James Watt in 1784.

Although there is no agreement on when the Anthropocene started, researchers accept that the Anthropocene is a time span marked by human interaction with Earth’s biophysical system. It has been defined, primarily, by significant and measurable increases in anthropogenic greenhouse gas emissions from ice cores, and other geologic features including synthetic organic compounds and radionuclides. Eugene Stoermer, in an interview in 2012, proposed that the geological mark for the Anthropocene was the isotopic signature of the first atomic bomb tests. Hence,  Anthropocene deposits would be those that may include the globally distributed primary artificial radionuclide signal (Zalasiewicz et al, 2015).

 

anthropocene

Alternative temporal boundaries for the Holocene–Anthropocene boundary (calibrated in thousand of years before present) From Smith 2013

 

Human activity is a major driver of the dynamics of Earth system. After the World War II, the impact of human activity on the global environment dramatically increased. This period associated with very rapid growth in human population, resource consumption, energy use and pollution, has been called the Great Acceleration.

During the Great Acceleration, the atmospheric CO2 concentration grew, from 311 ppm in 1950 to 369 ppm in 2000 (W. Steffen et al., 2011). About one third of the carbon dioxide released by anthropogenic activity is absorbed by the oceans. When CO2 dissolves in seawater, it produce carbonic acid. The carbonic acid dissociates in the water releasing hydrogen ions and bicarbonate. Then, the formation of bicarbonate removes carbonate ions from the water, making them less available for use by organisms. Ocean acidification affects the biogeochemical dynamics of calcium carbonate, organic carbon, nitrogen, and phosphorus in the ocean, and will directly impact in a wide range of marine organisms that build shells from calcium carbonate, like planktonic coccolithophores, molluscs,  echinoderms, corals, and coralline algae.

Clastic plastiglomerate containing molten plastic and basalt and coral fragments (Image adapted from P. Corcoran et al., 2014)

Clastic plastiglomerate containing molten plastic and basalt and coral fragments (Image adapted from P. Corcoran et al., 2013)

One important marker for the future geological record is a new type of rock formed by anthropogenically derived materials. This type of rock has been named plastiglomerate, and has been originally described on Kamilo Beach, Hawaii. This anthropogenically influenced material has great potential to form a marker horizon of human pollution, signaling the occurrence of the Anthropocene epoch (Corcoran et al., 2013).

Climate change, shifts in oceanic pH, loss of biodiversity and widespread pollution have all been identified as potential planetary tipping point. Since the industrial revolution, the wave of animal and plant extinctions that began with the late Quaternary has accelerated. Calculations suggest that the current rates of extinction are 100–1000 times above normal, or background levels. We are in the midst of  the so called “Sixth Mass Extinction”.

Dealing with the transition into the Anthropocene requires careful consideration of its social, economic and biotic effects. In his master book L’Evolution Créatrice (1907), French philosopher Henri Bergson, wrote:  “A century has elapsed since the invention of the steam engine, and we are only just beginning to feel the depths of the shock it gave us.”

 

References:

Will Steffen, Wendy Broadgate, Lisa Deutsch, Owen Gaffney, and Cornelia Ludwig. The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review, January 16, 2015 DOI: 10.1177/2053019614564785

Jan Zalasiewicz et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, published online January 12, 2015; doi: 10.1016/j.quaint.2014.11.045

Smith, B.D., Zeder, M.A., The onset of the Anthropocene. Anthropocene (2013),http://dx.doi.org/10.1016/j.ancene.2013.05.001

Ellis, E.C., 2011. Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society A 369, 1010–1035.

 

Brief history of the Ocean Acidification through time.

Corals one of the most vulnerable creatures in the ocean. Photo Credit: Katharina Fabricius/Australian Institute of Marine Science

Corals one of the most vulnerable creatures in the ocean. Photo Credit: Katharina Fabricius/Australian Institute of Marine Science

At the end of the nineteenth century Svante Arrhenius and Thomas Chamberlain were among the few scientists that explored the relationship between carbon dioxide concentrations in the atmosphere and global warming. About one third of the carbon dioxide released by anthropogenic activity is absorbed by the oceans. But the CO2 uptake lowers the pH and alters the chemical balance of the oceans. This phenomenon is called ocean acidification, and is occurring at a rate faster than at any time in the last 300 million years (Gillings, 2014; Hönisch et al. 2012). Acidification affects the biogeochemical dynamics of calcium carbonate, organic carbon, nitrogen, and phosphorus in the ocean as well as the seawater chemical will directly impact in a wide range of marine organisms that build shells from calcium carbonate, like planktonic coccolithophores and pteropods and other molluscs,  echinoderms, corals, and coralline algae.

The geologic record of ocean acidification provide valuable insights into potential biotic impacts and time scales of recovery.  Rapid additions of carbon dioxide during extreme events in Earth history, including the end-Permian mass extinction (252 million years ago) and the Paleocene-Eocene Thermal Maximum (PETM, 56 million years ago) may have driven surface waters to undersaturation. But, there’s  no perfect analog for our present crisis, because we are living in an “ice house” that started 34 million years ago  with the growth of ice sheets on Antarctica, and this cases corresponded to events initiated during “hot house” (greenhouse) intervals of Earth history.

Coccolithophores exposed to differing levels of acidity. Adapted by Macmillan Publishers Ltd: Nature Publishing Group, Riebesell, U., et al., Nature 407, 2000.

Coccolithophores exposed to differing levels of acidity. Adapted by Macmillan Publishers Ltd: Nature Publishing Group, Riebesell, U., et al., Nature 407, 2000.

The end-Permian extinction is the most severe biotic crisis in the fossil record, with as much as 95% of the marine animal species and a similarly high proportion of terrestrial plants and animals going extinct . This great crisis ocurred about 252 million years ago (Ma) during an episode of global warming. The cause or causes of the Permian extinction remain a mystery but new data indicates that the extinction had a duration of 60,000 years and may be linked to massive volcanic eruptions from the Siberian Traps. The same study found evidence that 10,000 years before the die-off, the ocean experienced a pulse of light carbon that most likely led to a spike of carbon dioxide in the atmosphere. This could have led to ocean acidification, warmer water temperatures that effectively killed marine life.

The early Aptian Oceanic Anoxic Event (120 million years ago) was an interval of dramatic change in climate and ocean circulation. The cause of this event was the eruption of the Ontong Java Plateau in the western Pacific, wich led to a major increase in atmospheric pCO2 and ocean acidification. This event was characterized by the occurrence of organic-carbon-rich sediments on a global basis along with evidence for warming and dramatic change in nanoplankton assemblages. Several oceanic anoxic events (OAEs) are documented in Cretaceous strata in the Canadian Western Interior Sea.

major changes in plankton assembledge

The Paleocene-Eocene Thermal Maximum (PETM; 55.8 million years ago) was a short-lived (~ 200,000 years) global warming event. Temperatures increased by 5-9°C. It was marked by the largest deep-sea mass extinction among calcareous benthic foraminifera in the last 93 million years. Similarly, planktonic foraminifer communities at low and high latitudes show reductions in diversity. The PETM is also associated with dramatic changes among the calcareous plankton,characterized by the appearance of transient nanoplankton taxa of heavily calcified forms of Rhomboaster spp., Discoaster araneus, and D. anartios as well as Coccolithus bownii, a more delicate form

The current rate of the anthropogenic carbon input  is probably greater than during the PETM, causing a more severe decline in ocean pH and saturation state. Also the biotic consequences of the PETM were fairly minor, while the current rate of species extinction is already 100–1000 times higher than would be considered natural. This underlines the urgency for immediate action on global carbon emission reductions.

References:

Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107, http://dx.doi.org/10.5670/oceanog.2009.100

Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

Payne JL, Turchyn AV, Paytan A, Depaolo DJ, Lehrmann DJ, Yu M, Wei J, Calcium isotope constraints on the end-Permian mass extinction, Proc Natl Acad Sci U S A. 2010 May 11;107(19):8543-8. doi: 10.1073/pnas.0914065107. Epub 2010 Apr 26.

Zeebe RE and Zachos JC. 2013 Long-term legacy ofmassive carbon input to the Earth system: Anthropocene versus Eocene. Phil Trans R Soc A 371: 20120006.http://dx.doi.org/10.1098/rsta.2012.0006.

Daniel H. Rothman, Gregory P. Fournier, Katherine L. French, Eric J. Alm, Edward A. Boyle, Changqun Cao, and Roger E. Summons (2014) “Methanogenic burst in the end-Permian carbon cycle,” PNAS doi: 10.1073/pnas.1318106111

Michael R Gillings, Elizabeth L Hagan-Lawson, The cost of living in the Anthropocene,  Earth Perspectives 2014, DOI 10.1186/2194-6434-1-2

 

The Chicxulub impact and the acid rain.

Chicxulub impact site (painting by Donald E. Davis) From Wikimedia Commons

Chicxulub impact site (painting by Donald E. Davis) From Wikimedia Commons

About thirty years ago, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that a 10 km asteroid collided with the Earth and caused one of the most devastating events in the history of life. The impact created the 180-kilometre wide Chicxulub crater causing widespread tsunamis along the coastal zones of the surrounding oceans and released an estimated energy equivalent of 100 teratons of TNT and produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere. The vapour produced by the impact  could have led to global acid rain and a dramatic acidification of marine surface waters. Calcareous nanoplankton (primarily the coccolithophores) and planktonic foraminifera had the highest extinction rates among the marine plankton.

Radar topography reveals the 180 km-wide (112 mi) ring of the Chicxulub Crater. From Wikimedia Commons

Radar topography reveals the 180 km-wide (112 mi) ring of the Chicxulub Crater. From Wikimedia Commons

But the exact mechanism that lead to the demise of the 75%  of all life on Earth including the non-avian dinosaurs still remain debated. To test the hypothesis that acid rain could have caused the extinction patterns observed, Sohsuke Ohno and colleagues at the Chiba Institute of Technology in Japan mounted natural anhydrite – the bedrock of the Chicxulub crater is largely anhydrite –   in a vacuum chamber with a chemically inert, high density tantalum metal plate backed with a plastic ablator a short distance from it.  The team used lasers to fire impactors into anhydrite test samples at velocities of 13 to 25 kilometres per second, very similar to the speeds expected in an asteroid impact. 

The mass spectrometer analysis, showed  there was more sulphur trioxide molecules than sulphur dioxide. Sulphur trioxide reacts quickly with atmospheric water vapour and form sulphuric acid aerosols. These sprays adhere to particles heavier silicates ejected into the atmosphere by the impact, returning to the surface much faster than previously thought. These results could also explain the so called fern spike right after the impact event, because ferns are one of the most tolerant plants for dealing with those conditions.

References:

Sohsuke Ohno, Toshihiko Kadono, Kosuke Kurosawa, Taiga Hamura, Tatsuhiro Sakaiya, Keisuke Shigemori, Yoichiro Hironaka, Takayoshi Sano, Takeshi Watari, Kazuto Otani, Takafumi Matsui  and Seiji Sugita, Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification, Nature Geoscience (2014) doi:10.1038/ngeo2095

Ocean acidification: Anthropocene versus Eocene.

Ammonia beccarii, Benthonic foraminifera. From Wikimedia Commons

Ammonia beccarii, Benthic foraminifera. From Wikimedia Commons

Last week a report from the International Programme on the State of the Ocean (IPSO) declared that ocean acidification has reached an unprecedented level in Earth’s history. Since the Industrial Revolution, the anthropogenic release of CO2 into the Earth’s atmosphere has increased a 40%.
Over the period from 1750 to 2000, the oceans have absorbed approximately one-third of the CO2 emitted by humans. The cost of this is the decrease in surface ocean pH, that cause dramatic effects on marine life.

When CO2 dissolves in seawater, it produce carbonic acid. The carbonic acid dissociates in the water releasing hydrogen ions and bicarbonate. The formation of bicarbonate then removes carbonate ions from the water, making them less available for use by organisms.

Other consequences of an increasingly acidic ocean include effects on metal speciation, reduced NH3/NH4+ ratios and alteration of underwater sound absorption.

Geological context for ocean acidification. (A) Candidate ocean acidification events. (B) Ocean surface pH calculated at 20 million year intervals. (C) Major changes in plankton assemblages. From Kump, 2009.

The geological record of ocean acidification may provide valuable insights for the future of Earth’s climate and how marine organisms could adapt to severe conditions.

The closest analog for today conditions is the Palaeocene–Eocene Thermal Maximum (PETM, approx. 56Ma), meaning greater similarities in continental configuration, ecosystem structure and function, and global carbon cycling.

The PETM was a short-lived (~ 200,000 years) global warming event when temperatures increased by 5-9°C. It was marked by the largest deep-sea mass extinction among calcareous benthic foraminifera in the last 93 million years. Similarly, planktonic foraminifer communities at low and high latitudes show reductions in diversity.

Nannofossil abundance changes during the PETM. From Kump, 2009.

The PETM is also associated with dramatic changes among the calcareous plankton,characterized by the appearance of transient nanoplankton taxa of heavily calcified forms of Rhomboaster spp., Discoaster araneus, and D. anartios as well as Coccolithus bownii, a more delicate form.

Because the PETM is considered the best analog to modern global warming, the changes in the assemblage of calcareous nanoplankton during this event could provide vital clues to the potential response of modern nanoplankton to ocean acidification.

Not only the magnitude but also the time scale of the carbon input is critical for its effect on ocean carbonate chemistry. The time scale of the anthropogenic carbon input is so short that the natural capacity of the surface reservoirs to absorb carbon is overwhelmed.

Comparison of the effects of anthropogenic emissions (total of 5000 Pg C over 500 years) and PETM carbon release (3000 Pg C over 6 kyr) on the surface ocean saturation state of calcite. From Zeebe, 2013

So, the anthropogenic carbon input rate is probably greater than during the PETM, causing a more severe decline in ocean pH and saturation state. Also the biotic consequences of the PETM were fairly minor, while the current rate of species extinction is already 100–1000 times higher than would be considered natural. This underlines the urgency for immediate action on global carbon emission reductions.

Trevor Manuel, a South African government minister and co-chair of the Global Ocean Commission stated that “Governments must respond as urgently as they do to national security threats – in the long run, the impacts are just as important”.

References:

Zeebe RE and Zachos JC. 2013 Long-term legacy ofmassive carbon input to the Earth system: Anthropocene versus Eocene. Phil Trans R Soc A 371: 20120006. http://dx.doi.org/10.1098/rsta.2012.0006.

Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107, http://dx.doi.org/10.5670/oceanog.2009.100