Halloween special VI: Baron Nopcsa and the dinosaurs of Transylvania

The Nopcsa Sacel Castle

Transylvania is mostly known for its myths about vampires. Following the publication of Emily Gerard’s The Land Beyond the Forest (1888), Jules Verne published Le Château des Carpathes (The Castle of the Carpathians) in which Transylvania is described as one of the most superstitious countries of Europe. But of course, the most significant contribution to the development of the Transylvania place myth was Bram Stoker’s Dracula, published in 1897.

Sacel Castle, at the heart of the Hateg region, is the last residence of the Nopcsa family, known as one of the strangest in Transylvania. Among the members of the family, there were governmental counselors and chancellors of the Transylvanian Court, members of the Royal Minister and of the Royal House, and knights of imperial orders. Baron Franz Nopcsa of Felsöszilvás (1877-1933), was one of the most prominent researchers and scholars of his day, and is considered the forgotten father of dinosaur paleobiology.

Baron Nopcsa in Albanian Uniform, 1915

In 1897 Nopcsa became a student of Vienna University and by the age of 22, he presented the first description and paleobiological analysis of one of the Transylvanian dinosaurs before the Vienna Academy of Science: Telmatosaurus transsylvanicus. The holotype, BMNH B.3386, was found in the Haţeg Basin.

The Hateg region, situated at the heart of Transylvania, is the cradle of Romanian civilization, but 70 million years ago it was a tropical island in the Thetys Ocean, noted for the occurrence of aberrant, endemic, and dwarfed fauna. In 1914, Nopcsa theorized that the “limited resources” found on islands have an effect of “reducing the size of animals” over the generations. Nopcsa noted several palaeobiological features in support of his views, including what he perceived as the common presence of pathological individuals, and considered this condition a reasonable result of the ecologically impoverished and stressed environment inhabited by this fauna. The recognition of ameloblastoma in a Telmatosaurus dentary discovered from the same area represents the best documented case of pathological modification identified in Transylvanian dinosaurs.

Doda, left, and Nopcsa, circa 1931. They spent nearly 30 years together. (Hungarian Natural History Museum)

Nopcsa continued to do collecting in the Haţeg Basin, at least until the beginning of the First World War. Among the fossils that Nopcsa studied were the duck-billed Telmatosaurus transylvanicus, the bipedal and beaked Zalmoxes robustus, the armored Struthiosaurus transylvanicus, and the sauropod Magyarosaurus dacus. In addition, he made extensive travels across much of Europe to visit palaeontological museums and to meet fellow scientists. In his field trips Nopcsa was now accompanied by Elmas Doda Bajazid, whom Nopcsa met in Albania and convinced to become his secretary. The men spent nearly 30 years togheter.

On 25 April 1933, Nopcsa’s body and that of his secretary Bajazid were found at their Singerstrasse residence. Nopcsa left a letter to the police: ”The motive for my suicide is a nervous breakdown. The reason that I shot my longtime friend and secretary, Mr Bayazid Elmas Doda, in his sleep without his suspecting at all is that I did not wish to leave him behind sick, in misery and without a penny, because he would have suffered too much. I wish to be cremated.”

 

References:

David B. Weishampel & Oliver Kerscher (2012): Franz Baron Nopcsa, Historical Biology: An International Journal of Paleobiology, DOI:10.1080/08912963.2012.689745

CSIKI, Z. & BENTON, M.J. (2010): An island of dwarfs – Reconstructing the Late Cretaceous Haþeg palaeoecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 293: 265 – 270 doi:10.1016/j.palaeo.2010.05.032

Dumbravă, M. D. et al. A dinosaurian facial deformity and the first occurrence of ameloblastoma in the fossil record. Sci. Rep. 6, 29271; doi: 10.1038/srep29271 (2016).

 

 

Advertisements

Forgotten women of paleontology: Irene Crespin

Irene Crespin (1896-1980)

Irene Crespin was born on November 12, 1896, in Kew, Victoria, Australia. In her memories, she wrote that her interest in Palaeontology began early in her life, when she was one of the first students to attend the Mansfield High School in northeastern Victoria. The head master of for a short period was the eminent Australian geologist Charles Fenner.

In 1919, she graduated with a B.A. from the University of Melbourne. In 1927 she joined the Commonwealth Government as Assistant Palaeontologist to Frederick Chapman at the National Museum of Victoria. Chapman was an authority on Foraminifera and was president of the Royal Society of Victoria. About her time at the Museum she wrote: “In the early days, we passed through the depression era. Our salaries were reduced overnight. I was reduced to six pounds a week. They were difficult times for us all. One would walk a long distance to save a threepenny tram fare.”

Dr Irene Crespin with W. Baragwanath, Secretary of Mines for Victoria, probably visiting a Cooksonia plant site, c. 1927 (From Turner 2007)

In 1936, Crespin succeeded Chapman as Commonwealth Palaeontologist. On February 10th, she was transferred from the National Museum, Melbourne to join the Commonwealth Geological Adviser, Dr. W.G. Woolnough, in Canberra. About her new position she wrote: “Of course, being a woman, and despite the tremendous responsibility placed upon me with the transfer to Canberra, I was given a salary of about half of that which Chapman received. Later the Chairman of the Public Service Board told me that I was being put on trial.”

She becoming greatly interested in the Tertiary microfaunas, and for some time she was the only professional micropaleontologist on the Australian mainland. Her research took her all over Australia. In 1939, she received permission from the Minister of the Interior to visit Java and Sumatra to discuss the problems of Tertiary correlation in the Netherlands East Indies with Papua and New Guinea.

Crespin’s photo of her aeroplane and crew on an overseas trip to Java, Indonesia, 1939 (From Turner 2007)

Crespin was well respected internationally and was a regular participant in national and international scientific conferences. In 1953, many of her books and specimens were destroyed as a result of a fire in the Canberra offices. The same year, she received Queen Elizabeth II’s coronation medal. In 1957 she was president of the Royal Society of Canberra, and was awarded with the Clarke medal of the Royal Society of New South Wales.

During her career she published 86 papers as sole author and more 22 in collaboration with other scientists. She was made an honorary fellow of the Royal Microscopical Society, London, in 1960. She became an honorary member of the Australian and New Zealand Association for the Advancement of Science in 1973. She died in Canberra, on January 2, 1980.

References:

Turner, S. (2007). Invincible but mostly invisible: Australian women’s contribution to geology and palaeontology. Geological Society, London, Special Publications, 281(1), 165–202. doi: 10.1144/sp281.11

Crespin, Irene (1975). “Ramblings of a micropalaeontologist”. BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS.

 

Mary Anning, ‘the greatest fossilist the world ever knew’.

Duria Antiquior famous watercolor by the geologist Henry de la Beche based on fossils found by Mary Anning. From Wikimedia Commons.

By the 19th century, the study of the Earth became central to the economic and cultural life of Great Britain. Women were free to take part in collecting fossils and mineral specimens, and they were allowed to attend lectures but they were barred from membership in scientific societies. England was ruled by an elite, and of course, these scholarly activities only occurred within the upper echelon of British society. Notwithstanding, the most famous fossilist of the 19th century was a women of a low social station: Mary Anning.

Mary Anning was born on Lyme Regis on May 21, 1799. Her father was a carpenter and an amateur fossil collector who died when Mary was eleven. He trained Mary and her brother Joseph in how to look and clean fossils. After the death of her father, Mary and Joseph used those skills to search fossils that they sold as “curiosities”. The source of those fossils was the coastal cliffs around Lyme Regis, part of a geological formation known as the Blue Lias.

The shore of Lyme Bay where Mary Anning did most of her collecting.

Invertebrate fossils, like ammonoids or belemnites, were the most common findings. But when Mary was 12, her brother Joseph found a skull protruding from a cliff and few month later, Mary found the rest of the skeleton. They sold it for £23. Later, in 1819, the skeleton was purchased by Charles Koenig of the British Museum of London who suggested the name “Ichthyosaur” for the fossil.

In 1819 the Annings were in considerable financial difficulties. They were rescued by the generosity of Thomas James Birch (1768–1829), who arranged for the sale of his personal collection, largely purchased from the Annings, in Bullock’s Museum in London.  The auction took place in May 1820, during which George Cuvier bought several pieces for the Muséum National d’Histoire Naturelle.

Mary Anning’s sketch of belemnites. From original manuscripts held at the Natural History Museum, London. © The Natural History Museum, London

On December 10, 1823, she discovered the first complete Plesiosaur skeleton at Lyme Regis in Dorset. The fossil was acquired by the Duke of Buckingham. Noticed about the discovery, George Cuvier wrote to William Conybeare suggesting that the find was a fake produced by combining fossil bones from different animals. William Buckland and Conybeare sent a letter to Cuvier including anatomical details, an engraving of the specimen and a sketch made by Mary Morland (Buckland’s wife) based on Mary Anning’s own drawings and they convinced Cuvier that this specimen was a genuine find. From that moment, Cuvier treated Mary Anning as a legitimate and respectable fossil collector and cited her name in his publications.

Autograph letter about the discovery of plesiosaurus, by Mary Anning. From original manuscripts held at the Natural History Museum, London. © The Natural History Museum, London

By the age of 27, Mary was the owner of a little shop: Anning’s Fossil Depot. Many scientist and fossil collectors from around the globe went to Mary´s shop. She was friend of Henry De la Beche, the first director of the Geological Survey of Great Britain, who knew Mary since they were both children and lived in Lyme Regis. De la Beche was a great supporter of Mary’s work. She also corresponded with Charles Lyell, William Buckland and Mary Morland, Adam Sedgwick and Sir Roderick Murchison.
It’s fairly to say that Mary felt secure in the world of men, and a despite her religious beliefs, she was an early feminist. In an essay in her notebook, titled Woman!, Mary writes:  “And what is a woman? Was she not made of the same flesh and blood as lordly Man? Yes, and was destined doubtless, to become his friend, his helpmate on his pilgrimage but surely not his slave…”

A) Mary Anning (1799- 1847) B) William Buckland (1784- 1856)

On December of 1828, Mary found the first pterosaur skeleton outside Germany. William Buckland made the announcement of Mary’s discovery in the Geological Society of London and named Pterodactylus macronyx in allusion to its large claws. The skull of Anning’s specimen had not been discovered, but Buckland thought that the fragment of jaw in the collection of the Philpot sisters of Lyme belonged to a pterosaur.
In 1829,  Mary Anning discovered Squaloraja polyspondyle, a fish. Unfortunately, the specimen was lost in the destruction of the Bristol Museum by a German bombing raid in November, 1940.
From her correspondence is clear that Mary learned anatomy by dissecting modern organisms. In a letter to J.S. Miller of the Bristol Museum, dated 20 January 1830, she wrote: “…I have dissected a Ray since I received your letter, and I do not think it the same genus, the Vertebrae alone would constitute it a different genus being so unlike any fish vertebrae they are so closely anchylosed that they look like one bone but being dislocated at two places show that each thin line is a separate vertebrae with the ends flat…”. 

Sketch of Mary Anning by Henry De la Beche.

Mary Anning, ‘the greatest fossilist the world ever knew’, died of breast cancer on 9 March, 1847, at the age of 47. She was buried in the cemetery of St. Michaels. In the last decade of her life, Mary received  three accolades. The first was an annuity of £25, in return for her many contributions to the science of geology. The second was in 1846, when the geologists of the Geological Society of London organized a further subscription for her. The third accolade was her election, in July 1846, as the first Honorary Member of the new Dorset County Museum in Dorchester.

After her death, Henry de la Beche, Director of the Geological Survey and President of the Geological Society of London, wrote a very affectionate obituary published in the Quarterly Journal of the Geological Society on February 14, 1848, the only case of a non Fellow who received that honour.

Mary Anning’s Window, St. Michael’s Church. From Wikimedia Commons.

In February 1850 Mary was honoured by the unveiling of a new window in the parish church at Lyme, funded through another subscription among the Fellows of the Geological Society of London, with the following inscription: “This window is sacred to the memory of Mary Anning of this parish, who died 9 March AD 1847 and is erected by the vicar and some members of the Geological Society of London in commemoration of her usefulness in furthering the science of geology, as also of her benevolence of heart and integrity of life.”

In 1865, Charles Dickens wrote an article about Mary Anning’s life in his literary magazine “All the Year Round”, where emphasised the difficulties she had overcome: “Her history shows what humble people may do, if they have just purpose and courage enough, toward promoting the cause of science. The inscription under her memorial window commemorates “her usefulness in furthering the science of geology” (it was not a science when she began to discover, and so helped to make it one), “and also her benevolence of heart and integrity of life.” The carpenter’s daughter has won a name for herself, and has deserved to win it.”

References:

Buckland, Adelene: Novel Science : Fiction and the Invention of Nineteenth-Century Geology, University of Chicago Press, 2013.

BUREK, C. V. & HIGGS, B. (eds) The Role of Women in the History of Geology. Geological Society, London, Special Publications, 281, 1–8. DOI: 10.1144/SP281.1.

Davis, Larry E. (2012) “Mary Anning: Princess of Palaeontology and Geological Lioness,”The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 8.

Hugh Torrens, Mary Anning (1799-1847) of Lyme; ‘The Greatest Fossilist the World Ever Knew’, The British Journal for the History of Science Vol. 28, No. 3 (Sep., 1995), pp. 257-284. Published by: Cambridge University Press.

De la Beche, H., 1848a. Obituary notices. Quarterly Journal of the Geological Society of London, v. 4: xxiv–xxv.

Dickens, C., 1865. Mary Anning, the fossil finder. All the Year Round, 13 (Feb 11): 60–63.

 

 

Before Jurassic Park: The study of ancient DNA.

A tick entangled in a dinosaur feather (From Peñalver et al., 2017)

We all know the story. In the early 80’s, John Hammond, a shady entrepreneur, created the ultimate thematic park by cloning dinosaurs from preserved DNA in mosquitoes entombed in amber. The idea, as Michael Crichton acknowledged, was not new.

In 1982, entomologist George Poinar and electron microscopist Roberta Hess at University of California,  found exceptional evidence for the organic preservation of a 40-million-year-old fly in Baltic amber. They saw intact cell organelles, such as nuclei, and mitochondria, and wondered whether these results were replicable. After a letter from Poinar to a colleague, they received, a week later,  a 70–80 million-year-old wasp in Canadian amber. The wasp also revealed evidence of cellular structure. The realization that amber was a special source of cellular preservation caused them to wonder if it could be a source of molecular preservation, too.

Quagga mare at London Zoo, 1870, the only specimen photographed alive

Poinar and Hess joined forces with Allan Wilson, Professor of Biochemistry at Berkeley, and Russell Higuchi, a molecular biologist and postdoctoral researcher in Wilson’s lab. A year later, they embarked on the first experiment to test ideas about the preservation and extraction of DNA from insects in ancient amber. Poinar selected eight specimens that would potentially offer optimal preservation of DNA. In two of the eight insects were signs of DNA, but no hybridization experiments were done to determine whether the results were due to human contamination.

Soon, Wilson and Higuchi turned their attention to the quagga, a subspecies of plains zebra that went extinct in 1883. The study, lead by Russell Higuchi, used two short mitochondrial DNA sequences from the muscle and connective tissue from a 140 year-old quagga from the Natural History Museum in Mainz, Germany, and confirmed that the quagga was more closely related to zebras than to horses.
The survival of DNA in quagga tissue and in an Egyptian mummy created waves among the scientific community, and in the autumn of 1984, Wilson and his lab submitted to the National Science Foundation (NSF), the first official research proposal to search for DNA in ancient and extinct organisms. They wrote: “This is the first proposal to study the possible utility of DNA to paleontology. If clonable DNA is present in many fossil bones and teeth and in insects included in amber, a new field, molecular paleontology, can arise.”

 

Reference:

Jones, E.D., Ancient DNA: a history of the science before Jurassic Park; Studies in History and Philosophy of Biol & Biomed Sci (2018), https://doi.org/10.1016/j.shpsc.2018.02.001

Poinar, G. O., & Hess, R. (1982). Ultrastructure of 40-million-year-old insect tissue.
Science, 215(4537), 1241–1242. DOI: 10.1126/science.215.4537.1241

Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312:282–284. doi: 10.1038/312282a0.

Peñalver, E. et al; Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages, Nature Communications volume 9, Article number: 472 (2017)
doi:10.1038/s41467-018-02913-w

Forgotten women of Paleontology: Elizabeth Anderson Gray

Elizabeth Anderson Gray (1831 – 1924) Image: The Trustees of the Natural History Museum, London

The nineteen century was the “golden age” of Geology. The Industrial Revolution ushered a period of canal digging and major quarrying operations. These activities exposed sedimentary strata and fossils, and the study of the Earth became central to the economic and cultural life of  Great Britain. The most popular aspect of geology was  the collecting of fossils and minerals and the nineteenth-century geology, often perceived as the sport of gentlemen,was in fact, “reliant on all classes”. Women were free to take part in collecting fossils and mineral specimens, and they were allowed to attend lectures but they were barred from membership in scientific societies. It was common for male scientists to have women assistants, but most of them went unacknowledged and become lost to history.  However, some women found the way to avoid that fate. One of those women was Elizabeth Anderson Gray.

Born in Alloway, Ayrshire, on February 21, 1831, Elizabeth Anderson Gray  is considered as one of the foremost Scottish fossil collectors of the late 19th and early 20th centuries. She had little formal schooling but as a girl joined her father, Thomas Anderson, in his hobby of fossil collecting. In 1856, she married a Glasgow banker, Robert Gray, co-founder of The Natural History Society of Glasgow. She took a geology course for women at Glasgow University and she trained her children to document their findings too. She was also friend of Jane Longstaff, a British malacologist and expert in fossil gastropods of the Palaeozoic. The Gray collections, considered important in studies of Ordovician fauna, were sold to institutions. In 1920 a major part of the collection was acquired by the British Museum for £2250. Charles Lapworth, in his work on the ‘Girvan Succession’ referred extensively to E. Gray’s collection in his stratigraphical correlations.

In 1900, Elizabeth Gray was made an honorary member of the Geological Society of Glasgow for her many contributions, and in 1903, she was awarded the Murchison geological fund in recognition of her skilful services to geological science. She continued gathering fossils until her death on 1924.

 

References:

BUREK, C. V. & HIGGS, B. (eds) The Role of Women in the History of Geology. Geological Society, London, Special Publications, 281, 1–8. DOI: 10.1144/SP281.1.

M. R. S. Creese (2007), Fossil hunters, a cave explorer and a rock analyst: notes on some early women contributors to geology, Geological Society, London, Special Publications, 281, 39-49. https://doi.org/10.1144/SP281.3

 

Forgotten women of Paleontology: Carlotta Joaquina Maury

Carlotta Joaquina Maury (January 6, 1874 – January 3, 1938)

In the 18th and 19th centuries women’s access to science was limited. Early female scientists were often born into influential families, like Grace Milne, the eldest child of Louis Falconer and sister of the eminent botanist and palaeontologist, Hugh Falconer. Unfortunately, their contribution has not been widely recognised by the public or academic researchers. Women collected fossils and mineral specimens, and were allowed to attend scientific lectures, but they were barred from membership in scientific societies. By the 1880, in the United States, geology was a marginal subject in the curricula of the early women’s colleges until an intense programme was started at Bryn Mawr College, a decade later.

Carlotta Joaquina Maury was born on January 6, 1874 in Hastings-on-Hudson, New York. She was the youngest  sister of astronomer Antonia Maury, who worked at the Harvard College Observatory as one of the so-called Harvard Computers. She was also the granddaughter of John William Draper and a niece of Henry Draper, both pioneering astronomers. Maury maternal grandmother was Antonia Coetana de Paiva Pereira, member of Portuguese nobility serving at the court of Emperor Dom Pedro I of Brazil, a connection which had and important influence on her career.

Harvard Computers at work, including Henrietta Swan Leavitt (1868–1921), Annie Jump Cannon (1863–1941), Williamina Fleming (1857–1911), and Antonia Maury (1866–1952).

She was educated at Radcliffe College from 1891 to 1894. Influenced by Elizabeth Agassiz, co-founder and first president of Radcliffe College, Maury attended Cornell University, where she obtained a PhD in 1902, making her one of the first women to receive her PhD in paleontology. Her mentor was Gilbert Harris, who founded the scientific journal Bulletins of American Paleontology.

Before completing her PhD, she spent a year at the Sorbonne. After teaching in several universities, she investigated microfossils in drilling samples along the Texas and Louisiana coasts and was given an official title as a paleontologist for the Louisiana Geological Survey. In 1910, Maury was recruited to be the paleontologist for oil geologist A.C. Veatch’s year-long geological expedition to Venezuela, a study funded by the General Asphalt Company of Philadelphia. Her discovery in Trinidad of Old Eocene beds with fossils faunas related to those of Alabama and the Pernambuco region of Brazil was the first finding of Old Eocene in the entire Caribbean and northern South America region.

Carlotta Maury at the Palaeontology Laboratory in Cornell. (From Arnold, 2009)

After a short break for teaching at Huguenot College in Wellington, South Africa, Maury returned to the Caribbean in 1916 as the leader of the “Maury Expedition” to the Dominican Republic, during a period of violent political upheaval on the island. The results  – type sections and descriptions of fossils, including more than 400 new species – are the foundation for the international Dominican Republic Project, a multi-disciplinary research effort that aims s to understand evolutionary change in the Caribbean from the Miocene era to the present day.

Her reputation for being extremely efficient and energetic helped her to defy the prejudice against professional women at the time. She was a consulting palaeontologist and stratigrapher to Royal Dutch Shell’s Venezuela Division for more than 20 year, and one of the official palaeontologists with the Geological and Mineralogical Service of Brazil. In 1925, she published “Fosseis Terciarios do Brazil with Descripção de Nova Cretaceas Forms” where she described numerous species of mollusks from the northeastern coast, performing the stratigraphic correlation of these faunas with similar faunas of the Caribbean and Gulf of Mexico.

C. Maury in 1916, Dominican Republic.

Maury was fellow of the Geological Society of America, and of the American Geographical Society. During the last decade of her life, she dedicated to publishing her consulting reports. Her last report about the Pliocene fossils of Acre, Brazil, appeared in 1937, shortly before her death. The same year she was elected member of the Brazilian Academy of Sciences.
Carlotta Maury died January 3, 1938 in Yonkers, New York.

References:

Lois Arnold (2009), The Education and Career of Carlotta J. Maury: Part 1., Earth Sciences History 28.2 (2009): 219-244 https://doi.org/10.17704/eshi.28.2.343vu112512w8170 

M. R. S. Creese (2007), Fossil hunters, a cave explorer and a rock analyst: notes on some early women contributors to geology, Geological Society, London, Special Publications, 281, 39-49. https://doi.org/10.1144/SP281.3

Burek, C.V. and B. Higgs, eds. (2007) The Role of Women in the History of Geology (London: Geological Society).

 

A brief history of Mesozoic theropods research in Gondwana

Snout of the ceratosaurian Genyodectes serus

In the last decades, the study of Gondwanan non-avian theropods has been highly prolific, showing that the group reached a great taxonomic and morphological diversity comparable to that of Laurasia. The Mesozoic Gondwanan neotheropod record includes: coelophysoids, basal averostrans, ceratosaurids, abelisauroids, megalosauroids, carcharodontosaurids, megaraptorans, basal coelurosaurs, compsognathids, alvarezsauroids, unenlagiids, and basal avialans, as well as putative tyrannosauroids, ornithomimosaur-like forms, and troodontid. Therefore, the Gondwanan fossil record has been crucial to understand the evolution and global biogeography of dinosaurs during the Mesozoic.

The first probable theropod remains from Gondwana were discovered in Colombia by Carl Degenhard, a German engineer, in 1839. At that time the word “dinosaur” did not even exist yet. Although Degenhard identified them as bird footprints, his brief description suggests that they were tracks of bipedal dinosaurs. But it was not until 1896 that the first Gondwanan theropod was named by the French palaeontologist Charles Depéret as “Megalosaurus” crenatissimus from the Upper Cretaceous of Madagascar. Several theropod remains were described from India, Africa, and South America during the 19th century. These early fragmentary discoveries lead the authors of the late XIX and early XX centuries to interpret them as belonging the same lineages present in Europe and North America.

Elaphrosaurus bambergi (Museum für Naturkunde 4960, holotype) from the Upper Jurassic of Tanzania (Janensch, 1920)

In 1901, A. Smith Woodward described Genyodectes, based on fragmentary skull bones, including portions of both maxillas, premaxillae,  parts of the supradentaries, and some teeth, discovered by Santiago Roth in Chubut, at the end of the 1880s. Genyodectes remained as the most completely known  theropod from South American until the 1970s. In 2004, O. Rauhut concluded that Genyodectes is more closely related to Ceratosaurus than the more derived abelisaurs.

Between 1915 and 1933, the most relevant Gondwanan theropod discoveries were produced by the work of the German palaeontologists Frederich von Huene, Ernst Stromer, and Werner Janensch, including for the first time the publication of very informative partial skeletons, such as those of Spinosaurus aegyptiacus and Elaphrosaurus bambergi (Stromer, 1915; Janensch, 1920). Despite its low fossil record, Spinosaurus is one of the most famous dinosaur of all time. This gigantic theropod possessed highly derived cranial and vertebral features sufficiently distinct for it to be designated as the nominal genus of the clade Spinosauridae. But during and after the Second World War the influence of the German palaeontology in the research of Gondwanan theropods abruptly declined.

Skull and neck of Carnotaurus sastrei

By the 1960s, the Argentine biologist Osvaldo Reig, together with Rodolfo Casamiquela and José Bonaparte, began to explore the Mesozoic rocks of Argentina looking for fossil tetrapods. In 1985, Bonaparte published a note presenting Carnotaurus sastrei as a new genus and species and briefly describing the skull and lower jaw. It was collected in the lower section of La Colonia Formation, Chubut Province. The discoveries of Bonaparte and his collaborators resulted in the recognition of the Patagonian theropod record as the most relevant and informative among Gondwanan continents. Some of the theropod species discovered in Patagonia are known on the basis of skulls and fairly complete skeletons offering insights into the anatomy and phylogeny of abelisaurids, carcharodontosaurids, and maniraptorans.

References:

Martín D. Ezcurra, and Federico L. Agnolín (2017). Gondwanan perspectives: Theropod dinosaurs from western Gondwana. A brief historical overview on the research of Mesozoic theropods in Gondwana. Ameghiniana 54: 483–487. Published By: Asociación Paleontológica Argentina https://doi.org/10.5710/102.054.0501

Novas, F.E., et al., Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia, Cretaceous Research (2013), http://dx.doi.org/10.1016/j.cretres.2013.04.001 

Buffetaut, E. 2000A forgotten episode in the history of dinosaur ichnology; Carl Degenhardt’s report on the first discovery of fossil footprints in South America (Colombia, 1839). Bulletin de la Société Géologique de France 171: 137140Google Scholar

 

Historical perspective on the dinosaur family tree

Megalosaurus at Crystal Palace Park, London. From Wikimedia Commons.

In the 19th century, the famous Victorian anatomist Richard Owen diagnosed Dinosauria using three taxa: Megalosaurus, Iguanodon and Hylaeosaurus, on the basis of three main features: large size and terrestrial habits, upright posture and sacrum with five vertebrae (because the specimens were from all Late Jurassic and Cretaceous, he didn’t know that the first dinosaurs had three or fewer sacrals). These characteristics were more mammalian than reptilian. But new fossil findings from Europe and particularly North America forced to a new interpretation about those gigantic animals.

In 1887, Harry Govier Seeley summarised the works of Cope, Huxley and Marsh who already subdivided the group Dinosauria into various orders and suborders. However, he was the first to subdivide dinosaurs into Saurischians and the Ornithischians, based on the nature of their pelvic bones and joints. He wrote: The characters on which these animals should be classified are, I submit, those which pervade the several parts of the skeleton, and exhibit some diversity among the associated animal types. The pelvis is perhaps more typical of these animals than any other part of the skeleton and should be a prime element in classification. The presence or absence of the pneumatic condition of the vertebrae is an important structural difference…” Based on these features, Seeley denied the monophyly of dinosaurs.

Seeley’s (1901) diagram of the relationships of Archosauria. From Padian 2013

At the mid 20th century, the consensual views about Dinosauria were: first, the group was not monophyletic; second almost no Triassic ornithischians were recognised, so they were considered derived morphologically, which leads to the third point, the problem of the ‘‘origin of dinosaurs’’ usually was reduced to the problem of the ‘‘origin of Saurischia,’’ because theropods were regarded as the most primitive saurischians. A great influence on the views about the dinosaur origins was Alan Charig. He was Curator of Amphibians, Reptiles and Birds at the British Museum (Natural History), now the Natural History Museum, in London for almost thirty years. Charig thought that the first dinosaurs were quadrupedal, not bipedal. He based this on the kinds of animals that he and his colleagues found in the early Triassic localities of eastern and South Africa. He thought that forms such as ‘‘Mandasuchus’’ were related to dinosaurs, but that they had a posture intermediate between a sprawling and upright gait that he called ‘‘semi-improved” or ‘‘semi-erect’’.

Herrerasaurus skull. From Wikimedia Commons.

The discovery of Lagosuchus and Lagerpeton from the Middle Triassic of Argentina induced a change in the views of dinosaurs origins. Also from South America came Herrerasaurus from the Ischigualasto Formation, the basal sauropodomorphs Saturnalia, Panphagia, Chromogisaurus, and the theropods Guibasaurus and Zupaysaurus, but no ornithischians except a possible heterodontosaurid jaw fragment from Patagonia. The 70s marked the beginning of a profound shift in thinking on nearly all aspects of dinosaur evolution, biology and ecology. Robert Bakker and Peter Galton, based on John Ostrom’s vision about Dinosauria, proposed, for perhaps the first time since 1842, that Dinosauria was indeed a monophyletic group and that it should be separated (along with birds) from other reptiles as a distinct ‘‘Class”. In 1986, the palaeontologist Jacques Gauthier showed that dinosaurs form a single group, which collectively has specific diagnostic traits that set them apart from all other animals.

From Baron et al., 2017.

Phylogenetic analyses of early dinosaurs have  supported the traditional scheme. But back in March of this year, a paper, authored by Matthew Baron, David Norman and Paul Barrett, challenged this paradigm with a new phylogenetic analysis that places theropods and ornithischians together in a group called Ornithoscelida. The team analysed a wide range of dinosaurs and dinosauromorphs (74 taxa were scored for 457 characters), and they arrived at a dinosaur evolutionary tree containing one main branch that subdivides into the groupings of Ornithischia and Theropoda, and a second main branch that contains the Sauropoda and Herrerasauridae (usually positioned as either basal theropods or basal Saurischia, or outside Dinosauria but close to it). The term Ornithoscelida was coined in 1870 by Thomas Huxley for a group containing the historically recognized groupings of Compsognatha, Iguanodontidae, Megalosauridae and Scelidosauridae. The synapomorphies that support the formation of the clade Ornithoscelida includes: an anterior premaxillary foramen located on the inside of the narial fossa; a sharp longitudinal ridge on the lateral surface of the maxilla; short and deep paroccipital processes; a post-temporal foramen enclosed within the paroccipital process; a straight femur, without a sigmoidal profile; absence of a medioventral acetabular flange; a straight femur, without a sigmoidal profile; and fusion of the distal tarsals to the proximal ends of the metatarsals.

Of course, those results have great implications for the very origin of dinosaurs. Ornithischia don’t begin to diversify substantially until the Early Jurassic. By contrast, the other dinosaurian groups already existed by at least the early Late Triassic. If the impoverished Triassic record of ornithischians reflects a true absence, ornithischians might have evolved from theropods in the Late Triassic (Padian, 2017). The study also suggest that dinosaurs might have originated in the Northern Hemisphere, because most of their basal members, as well as their close relatives, are found there. Furthermore, their analyses places the origin of dinosaurs at the boundary of the Olenekian and Anisian stages (around 247 Ma), slightly earlier than has been suggested previously.

 

The dinosaur family tree Credit: Max Langer

More recently, an international team of early dinosaur evolution specialists, led by Max Langer, highlighted that the lack of some important taxa (for example, the early thyreophoran Scutellosaurus, the possible theropod Daemonosaurus, and the newly described Ixalerpeton and Buriolestes) may have a substantial effect on character optimizations near the base of the dinosaur tree, and thus on the interrelationships of early dinosaurs. The study did not find strong evidence to discard the traditional Ornithischia–Saurischia division. But they reintroduced a third possibility that was articulated in the 1980s but rarely discussed since: that sauropodomorphs and ornithischians may form their own herbivorous group, separate from the ancestrally meat-eating theropods. The Phytodinosauria hypothesis was coined by Robert T. Bakker in his book The Dinosaur Heresies: “Therefore all the plant-eating dinosaurs of every sort really constitute one, single natural group branching out from one ancestor, a primitive anchisaurlike dinosaur. And a new name is required for this grand family of vegetarians. So I hereby christen them the Phytodinosauria, the “plant dinosaurs”‘

References:

Max C. Langer, Martín D. Ezcurra, Oliver W. M. Rauhut, Michael J. Benton, Fabien Knoll, Blair W. McPhee, Fernando E. Novas, Diego Pol & Stephen L. Brusatte, Untangling the dinosaur family tree, Nature 551 (2017) doi; oi:10.1038/nature24012

Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution.  Nature 543, 501–506  (2017).  doi:10.1038/nature21700

Padian K. Dividing the dinosaurs. Nature 543, 494–495 (2017) doi:10.1038/543494a

Padian K. The problem of dinosaur origins: integrating three approaches to the rise of Dinosauria. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Available on CJO 2013 doi:10.1017/S1755691013000431 (2013).

Seeley, H. G. On the classification of the fossil animals commonly named DinosauriaProc. R. Soc. Lond. 43165171 (1887).

Huxley, T. H. On the classification of the Dinosauria, with observations on the Dinosauria of the Trias. Quarterly Journal of the Geological Society, London 26, 32-51. (1870).

Forgotten women of Paleontology: Margaret Benson

Margaret Jane Benson. Portrait in the Archives of Royal Holloway, University of London (RHC PH/282/13) From Fraser & Cleal, 2007

It is a truth universally acknowledged, that women has always work harder than men to gain some recognition. It was true in the 16th, and it’s true now. In “A Room of One’s Own”, Virginia Woolf explores the conflicts that a gifted woman must have felt during the Renaissance through the fictional character of Judith Shakespeare, the sister of William Shakespeare, and cites as obstacles the indifference of most of the world, the profusion of distractions, and the heaping up of various forms of discouragement. But not only in the Elizabethan times. In the Victorian times there was the common assumption that the female brain was too fragile to cope with mathematics, or science in general. In a letter from March 1860, Thomas Henry Huxley wrote to great geologist Charles Lyell FRS: “Five-sixths of women will stop in the doll stage of evolution, to be the stronghold of parsonism, the drag on civilisation, the degradation of every important pursuit in which they mix themselves – intrigues in politics and friponnes in science.”

Margaret Crosfield on a Geologists’ Association fieldtrip to Leith Hill with Professor Lapworth (From Burek and Malpas, 2007).

Women have played  various and extensive roles in the history of geology. Unfortunately, their contribution has not been widely recognised by the public or academic researchers. In the 18th and 19th centuries women’s access to science was limited, and science was usually a ‘hobby’ for intelligent wealthy women. Early female scientists were often born into influential families, like Grace Milne, the eldest child of Louis Falconer and sister of the eminent botanist and palaeontologist, Hugh Falconer; or Mary Lyell, the daughter of the geologist Leonard Horner. They collected fossils and mineral specimens, and were allowed to attend scientific lectures, but they were barred from membership in scientific societies. But by the first half of the 20th century, a third of British palaeobotanists working on Carboniferous plants were women. The most notable were  Margaret Benson, Emily Dix, and Marie Stopes.

Newnham began as a house for five students in Regent Street in Cambridge in 1871

Margaret Benson was born on the 20th October 1859 in London. Between 1878 and 1879, she studied at Newnham College Cambridge. After obtaining her BSc at University College London (UCL) in 1891, she started research on plant embryology.  In 1893, Benson was appointed head of the new Department of Botany at Royal Holloway College, the first woman in the United Kingdom to hold such a senior position in the field of botany. Her palaeobotanical research centred on the anatomy of reproductive structures, especially of Carboniferous pteridosperms and lycophytes. In 1904, she was among the first group of women to be elected as Fellows of the Linnean Society, and in 1912 she was appointed Professor of Botany at the University of London. Her major study on lycophyte fructifications was on the cones of the Sigillaria plant. She also speculated on the relationship between the Palaeozoic arborescent lycophytes and the Recent Isoetes, with the Triassic Pleuromeia as a possible intermediate form. She worked with ferns and cordaites and described a new species, Cordaites felicis. Benson’s work is characterized by careful description. One of her most important theoretical works concerns the phylogenetic significance of the sporangiophore in lycophytes, sphenophytes and ferns. After her retirement in 1922, she was encouraged by D. H. Scott to write up some of her earlier unpublished work on the root anatomy of the early Carboniferous pteridosperm Heterangium. She even continued with fieldwork when she was in her 70s. There is an unpublished manuscript in which she described a new fertile Rhacopteris that she collected from Teilia Quarry in North Wales in 1933. She died on 20th June 1936 at Highgate, Middlesex.

References:

H. E. Fraser and C. J. Cleal, The contribution of British women to Carboniferous palaeobotany during the first half of the 20th century, Geological Society, London, Special Publications, 281, 51-82, 1 January 2007, https://doi.org/10.1144/SP281.4

C. V. Burek (2007). The role of women in geological higher education – Bedford College, London (Catherine Raisin) and Newnham College, Cambridge, UK, Geological Society, London, Special Publications, eds Burek C. V., Higgs B. 281, pp 9–38

 

A brief history of the Spinosaurus.

One of the photographs donate by W. Stromer. Image from the Washington University in St. Louis

Despite its low fossil record, Spinosaurus is one of the most famous dinosaur of all time. This gigantic theropod possessed highly derived cranial and vertebral features sufficiently distinct for it to be designated as the nominal genus of the clade Spinosauridae. In 1910, E. Stromer went to his third paleontological expedition to Egypt. He arrived to Alexandria on November 7. He was initially looking for early mammals and planned visit the area of Bahariya, in the Western Desert, which has sediments from the Cretaceous era. But an expedition to the Western Desert needed the permission by the English and French colonial authorities and of course the Egyptian authorities. Although diplomatic relations with Germany were rapidly deteriorating, Stromer managed to get the permissions. He arrived to the Bahariya Oasis on January 11, 1911. After facing some difficulties during the journey, on January 17 he began to explore the area of Gebel el Dist, and at the bottom of the Bahariya Depression, Stromer found  the remains of four immense and entirely new dinosaurs (Aegyptosaurus, Bahariasaurus, Carcharodontosaurus and Spinosaurus aegyptiacus), along with dozens of other unique specimens. Stromer and Markgraf recovered the right and left dentaries and splenials from the lower jaw; a straight piece of the left maxilla that was described but not drawn; 20 teeth; 2 cervical vertebrae; 7 dorsal (trunk) vertebrae; 3 sacral vertebrae; 1 caudal vertebra; 4 thoracic ribs; and gastralia. This gigantic predator is estimated to have been about 14 m, with unusually long spines on its back that probably formed a large, sail-like structure.

1) Photograph of the right mandibular ramus of the holotype of Spinosaurus aegyptiacus Stromer, 1915 (BSP 1912 VIII 19), in lateral view. 2) Reproduction of Stromer’s (1915, pl. I, fig. 12a) illustration of the right mandibular ramus.

Due to political tensions before and after World War I, many of this fossils were damaged after being inspected by colonial authorities and not arrived to Munich until 1922. The shipping from El Cairo was paid by the Swiss paleontologist Bernhard Peyer (1885-1963), a former student and friend of Stromer. During the World War II, E. Stromer tried to convince Karl Beurlen -a young nazi paleontologist who was in charge of the collection- that he had to move the fossils to a safer place, but Beurlen refused to do it. Unfortunately, on April 24, 1944, a British Royal Air Force raid bombed the museum and incinerated its collections. Only two photographs of the holotype of Spinosaurus aegyptiacus were recovered in in the archives of the Paläontologische Museum in June 2000, after they were donated to the museum by Ernst Stromer’s son, Wolfgang Stromer, in 1995. These photographs provide additional insight into the anatomy of the holotype specimen of Spinosaurus aegyptiacus.

“Illustrations of the vertebrate “sail” bones of Spinosaurus that appeared in one of Stromer’s monographs. From Wikimedia Commons.

In his original monograph, Stromer emphasized the peculiar character of the teeth of this unusual theropod. Because of their morphological convergence with those of crocodilians and other fish-eating reptiles, isolated spinosaurid teeth have frequently been misinterpreted. It appears that Baryonyx-like teeth were collected by Gideon Mantell in Sussex around 1820. Georges Cuvier was the first to publish an illustration of the four teeth from Tilgate Forest. These teeth, however, were generally considered as belonging to crocodilians, and when Richard Owen erected the taxon Suchosaurus cultridens to designate them he placed it among the crocodiles. Even when Owen realized that these teeth were peculiar in many respects and hinted at possible affinities with dinosaurs, he persistently classified Suchosaurus as a crocodilian, an interpretation that was accepted by most subsequent authors.

Although Stromer’s original description of Spinosaurus aegyptiacus was published in 1915, a more complete detailed picture of its anatomy, evolution, and biogeography only begun to emerge in recent decades.

 

References:

HONE, D. W. E. and HOLTZ, T. R. (2017), A Century of Spinosaurs – A Review and Revision of the Spinosauridae with Comments on Their Ecology. Acta Geologica Sinica, 91: 1120–1132. doi: 10.1111/1755-6724.13328

Smith, et al. “NEW INFORMATION REGARDING THE HOLOTYPE OF SPINOSAURUS AEGYPTIACUS STROMER, 1915.” J. Paleont., 80(2), 2006, pp. 400–406