Pterosaurs and the origin of feathers

Reconstructed T. imperator skeleton, National Museum of Brazil. From Wikimedia Commons

Feathers were once considered to be unique avialan structures linked to birds evolutionary success. Primitive theropods, such as Sinosauropteryx and the tyrannosaurs Dilong and Yutyrannus, and some plant-eating ornithischian dinosaurs, such as Tianyulong, and Kulindadromeus are known from their spectacularly preserved fossils covered in simple, hair-like filaments called ‘protofeathers’. Other integumentary filaments, termed pycnofibres, has been reported in several pterosaur specimens. The discovery of integumentary structures in other pterosaurs, such as Pterorhynchus wellnhoferi (a rhamphorhynchoid pterosaur), and other exquisitely preserved specimens from China, suggest that all Avemetatarsalia (the wide clade that includes dinosaurs, pterosaurs and close relatives) were ancestrally feathered.

A new specimen of an adult Tupandactylus imperator, a tapejarid pterosaur from north-eastern Brazil, preserves extensive soft tissues which provides more evidence that pterosaurs had feathers. The fossil, originally poached from an undetermined outcrop of the Early Cretaceous Crato Formation, was in privated hands for an unknown period of time and later deposited at the Royal Belgian Institute of Natural Sciences (RBINS). The fossil was repatriated to Brazil early this year.

Details of the cranial crest of MCT.R.1884 and the scanning electron microscope images of melanosomes (g-i). Scale bars, 50 mm (a); 5 mm (b); 2 mm (c); 250 μm (d–f); 2 μm (g–i). From Cincotta et al., 2022.

The new specimen (MCT.R.1884) comprises the posterior portion of the cranium and the remains of a soft tissue cranial crest preserved on five separate slabs. Two types of fibrous integumentary structures were present. The monofilaments (approximately 30 mm long and 60–90 μm wide) resemble those present in the anurognathid Jeholopterus ningchengensis and the ornithischian dinosaur Tianyulong. The most striking feature is the presence of fossil melanosomes with diverse morphologies that supports the hypothesis that the branched integumentary structures in pterosaurs are feathers.

Melanosomes are granules of the pigment melanin. The diverse shape of the melanosomes recovered from the skin fibres in the crest, monofilaments and branched feathers resembles that in the skin of extant birds and mammals. This is an indication that pterosaurs had the genetic machinery to control the colors of their feathers.

References:

Cincotta, A., Nicolaï, M., Campos, H.B.N. et al. Pterosaur melanosomes support signalling functions for early feathers. Nature (2022). https://doi.org/10.1038/s41586-022-04622-3

Introducing Abditosaurus kuehnei, the ‘forgotten reptile’ 

Abditosaurus kuehnei. Image credit: Oscar Sanisidro / Museu de la Conca Dellà

Towards the end of the Cretaceous, France, Spain and Portugal formed the Ibero-Armorican Island. This region holds one the most complete sauropod dinosaur communities and provides clues to understand the events that differentiate the Ibero-Armorican vertebrate assemblages from those of other European islands. The recently described Abditosaurus kuehnei from the Late Cretaceous of Catalonia is the most complete titanosaur skeleton discovered in Europe so far. The new taxon support the migration hypothesis and shed new light on the palaeobiogeographic events between the European archipelago and Godwana. 

Abditosaurus reached 17,5 meters in length (57 ft) with a body mass of 14,000 kg. The holotype, an associated, semi-articulated, partial skeleton, includes several isolated teeth, 12 cervical vertebrae, 7 dorsal vertebrae, 3 chevrons, scapular and pelvic bones, right tibia, parts of the femurs and a complete humerus. The new specimen exhibits an unusual combination of characters not seen in other Ibero–Armorican titanosaurs, like a very robust humerus with a distally expanded deltopectoral crest, a synapomorphy of Saltasauridae. The generic name is derived from the Latin word ‘Abditus’ (means forgotten), and the Greek word “sauros” (lizard). The specific name ‘kuehnei’ honours Professor Walter Georg Kühne who discovered the specimen.

Fossil elements of Abditosaurus kuehnei collected during the 2012-2014 excavations. Image credit: Rubén Contreras. From Vila et al., 2022.

Phylogenetic analyses indicates that Abditosaurus is a saltasaurid lithostrotian titanosaur. Saltasaurinae, a clade from South America and Africa, includes Neuquensaurus, Saltasaurus and Paralititan. The arrival of Abditosaurus to Europe via a dispersal event from Africa ocurred after a regressive event during the Early Maastrichtian(70.6 Ma) that affected the central Tethyan margin and northern Africa.

The history of Abditosaurus began in 1954. Walter Kühne, one of the most renowned specialists on fossil mammals in Europe, found the bones near Orcau (Tremp Basin, Catalonia, Spain), and sent to the Instituto Lucas Mallada in Madrid. In 1955, Kühne revisited the site and collected ten more bones. Unfortunately, the site fall out in oblivion until 1986. when a team led by Josep Vicenç Santafé from the Institut de Paleontologia de Sabadell (Barcelona) found part of a sternal plate and three dorsal ribs. Between 2012 to 2014, a team from the Institut Català de Paleontologia, the Universidad de Zaragoza, and the Museu de la Conca Dellà re-excavated the locality and recovered the remaining axial and appendicular elements. Finally, after 6 decades, the sauropod discovered by Kühne was completely collected in 2014.

References:

Vila, B., Sellés, A.G., Moreno-Azanza, M., Razzolini, N.L., Gil-Delgado, A., Canudo, J.I., Galobart, À. Nature Ecology & Evolution (2022). DOI: 10.1038/s41559-021-01651-5.

Fondevilla, Victor, et al. Chronostratigraphic synthesis of the latest Cretaceous dinosaur turnover in south-western Europe. Earth-Science Reviews (2019) https://doi.org/10.1016/j.earscirev.2019.01.007

The Flower Revolution

The rise of angiosperms was accompanied by massive expansion in biodiversity. From Benton et al., 2021

Angiosperms, or flowering plants, represent almost 90% of all living land plants. The group first appeared in the fossil record during the Early Cretaceous and by the Late Cretaceous, angiosperms came to dominate plant diversity. Charles Darwin’s fascination and frustration with the evolutionary events associated with the origin and early radiation of angiosperms are legendary. On 22 July 1879, in a letter to Joseph Dalton Hooker, Darwin refers to the early evolution of flowering plants as an “abominable mystery”. Since Darwin many new fossils have been found and facilitated the calibration of molecular clock age estimates for various angiosperm clades. Before the Aptian, the only convincing angiosperm megafossils are from the Barremian Las Hoyas flora of Spain and the Yixian flora of northeastern China. By contrast, there is an extensive pre-Aptian pollen record of angiosperms.

Model of the ancestral flower (From Sauquet et al., 2017)

The Angiosperm Terrestrial Revolution (Benton et al., 2021) reshaped the entire terrestrial ecosystem. Flowering plants altered climate and water cycles, and drove a massive expansion in biodiversity of numerous key groups of fungi, insects, arachnids, reptiles, mammals and birds. But angiosperm success lies no only in their possesion of flowers. They have smaller genomes on average than other plants, which lead to small cell sizes in angiosperms with tightly-packed internal structures. Other key innovations like high vein density and densely packed stomata are also related to genome size. Stomata are the controlled pores through which plants exchange gases with their environments, and play a key role in regulating the balance between photosynthetic productivity and water loss through transpiration

Atmospheric CO2 concentrations and paleotemperatures were the major drivers of floristic turnover. Multiple climate proxy records, identified the EECO as the warmest interval of the past 65 million years. During EECO (Eocene Climate Optimum), the warmest interval of the past 65 million years, emerged many angiosperm dominated forest. Today, many organisms depend substantially or entirely on angiosperms for their existence, especially in tropical rain forests. Among them are about 15 000 species of lizards, birds and mammals. 

References:

Benton, Michael J., et al. 2021. The Angiosperm Terrestrial Revolution and the Origins of Modern Biodiversity. New Phytologist. Wiley Online Library https://doi.org/10.1111/nph.17822

Sauquet, H., von Balthazar, M., Magallón, S. et al. The ancestral flower of angiosperms and its early diversification. Nat Commun 8, 16047 (2017). https://doi.org/10.1038/ncomms16047

A new giant titanosaur sauropod from the Upper Cretaceous of Argentina

Image credit: Jose Luis Carballido/CTyS-UNLaM/AFP

Since the discovery of dinosaur remains in the Neuquen basin in 1882, Argentina has gained the title of Land of the Giants. The tittle was reinforced by the discoveries of titanosaurs like Argentinosaurus, Dreadnoughtus, Notocolossus, Puertasaurus, and Patagotitan. The study of this diverse group of sauropod dinosaurs embrace an extensive list of important contributions, which started with Richard Lydekker’s pioneering work on Patagonian dinosaurs. 

Titanosauria is a diverse clade of sauropod dinosaurs represented by nearly 80 genera described worldwide. The group includes the smallest (e.g. Rinconsaurus, and Saltasaurus; with estimated body masses of approximately 6 tonnes) and largest sauropods known to date. The Argentinean record of titanosaurs is particularly abundant with almost 50% of the total world record. For years, Argentinosaurus huinculensis was considered the largest dinosaur that ever walked the Earth. The tittle is now in possession of Patagotitan mayorum, discovered in 2010. The first estimations of Patagotitan body mass suggested that it weigh around 70 tons and reached 40 metres (131 feet) long. But a new study published in 2020 indicates that the body mass of Patagotitan ranges between 42–71 tons, with a mean value of 57 tons.

 

Figure 2. Caudal sequence of MOZ-Pv 1221 and detail of caudal vertebrae 3, 4, 11 and posterior element. From Otero et al., 2021

A new specimen from the Candeleros Formation (98 Ma) of Neuquén Province probably exceeds Patagotitan in size. This new giant titanosaur sauropod was discovered in 2012 and is the second taxon from Candeleros Formation, in addition to Andesaurus. The new specimen, identified as MOZ-Pv 1221, includes a sequence of anterior and middle caudal vertebrae, consisting of the first 20 mostly articulated caudal vertebrae and haemal arches plus isolated posterior caudals, pelvis and other appendicular elements. The preserved caudal sequence corresponds to approximately the anterior half of the tail. The neural spines of the anterior caudal vertebrae in MOZ-Pv 1221 are transversely wider than anteroposteriorly long.

Compared to other giant titanosaurs, the recovered appendicular bones of MOZ-Pv 1221 are larger than any known titanosaur described to date. The maximum dorsoventral height at the proximal section of the scapula is 17% higher than in Patagotitan, 26% higher than in Dreadnoughtus, and 130% higher than in Mendozasaurus. The maximum proximo distal length of the pubis of MOZ-Pv 1221 is 166 cm, which is 10% longer than in Patagotitan, 18% longer than in Dreadnoughtus, and 21% longer than in Futalognkosaurus. Although it is not currently possible to estimate the body mass of MOZ-Pv 1221 because of the fragmentary nature of this specimen, it is clear that this new titanosaur partially recovered from the Candeleros Formation can be considered one of the largest titanosaurs that ever walked the Earth.

 

References:

Otero A, Carballido JL, Salgado L, Canudo JI, Garrido AC (2021), Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquén Province, Argentina, Cretaceous Research https://doi.org/10.1016/j.cretres.2021.104754

Carballido JL, Pol D, Otero A, Cerda IA, Salgado L, Garrido AC, Ramezani J, Cúneo NR, Krause JM. 2017 A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc. R. Soc. B 284: 20171219.
DOI: 10.1098/rspb.2017.1219

Otero, A., J. L. Carballido, A. Pérez Moreno. 2020. The appendicular osteology of Patagotitan mayorum (Dinosauria, Sauropoda). Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2020.1793158

Benson, R. B. J., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P., & Evans, D. C. (2014). Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage. PLoS Biology, 12(5), http://doi.org/10.1371/journal.pbio.1001853.

The skull of Skorpiovenator bustingorryi

Skorpiovenator, from the late Cretaceous of Argentina. Museo Municipal Ernesto Bachmann

Skorpiovenator bustingorryi. Museo Municipal Ernesto Bachmann

The Abelisauridae represents the best-known carnivorous dinosaur group from Gondwana. Their fossil remains have been recovered in Argentina, Brazil, Morocco, Niger, Libya, Madagascar, India, and France. The group was erected by Jose Bonaparte with the description of Abelisaurus comahuensis. The group exhibits strongly reduced forelimbs and hands, stout hindlimbs, with a proportionally robust and short femur and tibia. The skull of abelisaurids is characterized by having a short and deep cranium at the level of the snout, antorbital fenestra with reduced antorbital fossa, frontals strongly thickened and ornamented conforming well-developed cornual structures, expanded parietal crest with a tall parietal eminence. The nasal bones of abelisaurids are distinctive on having two distinct patterns: Abelisaurus, Carnotaurus, and Majungasaurus have nasals transversely convex and extensively sculptured by highly projected rugosities, while Skorpiovenator and Rugops have nasals posteriorly expanded, with lateral and tall bony crests, which give the nasals a transversally concave profile, and conspicuous foramina over the dorsal surface.

Skull of Skorpiovenator (MMCH-PV 48). (scales bar: 5 cm)

Skull of Skorpiovenator bustingorry (MMCH-PV 48). (scale bar: 5 cm)

Skorpiovenator bustingorry is a derived abelisaurid known from a single and nearly complete skeleton (MMCh-PV 48) recovered from rocks of the famous Huincul Formation (Late Cenomanian–Early Turonian). The skull of Skorpiovenator is strongly ornamented with ridges, furrows and tubercles. Unlike other abelisaurids, in Skorpiovenator both nasals are completely unfused. But the most striking feature is an outstanding series of three large foramina in the skull roof of Skorpiovenator that appear to be an extension of the foramina row from the nasals. This feature likely represent an autapomorphy of Skorpiovenator. CT scans made on the skull of Skorpiovenator and Carnotaurus revealed an internal system of canals linked to the dorsal nasal foramina, which likely represent a correlate for a neurovascular complex. This neurovascular system was probably related to the lateral nasal vessels and perhaps innervated by the trigeminal nerve as in extant archosaurs. The biological significance of such neurovascular system could be linked to a zone of thermal exchange, which may help avoid overheat of encephalic tissues.

References:

Cerroni, M. A., Canale, J. I., Novas, F. E., & Paulina-Carabajal, A. (2020). An exceptional neurovascular system in abelisaurid theropod skull: New evidence from Skorpiovenator bustingorryi. Journal of Anatomy. doi:10.1111/joa.13258

The Spinosaurus tail

Reconstructed skeleton and caudal series of Spinosaurus aegyptiacus. From Ibrahim et al., 2020.

Spinosaurus aegyptiacus is one of the most famous dinosaur of all time. It was discovered by German paleontologist and aristocrat Ernst Freiherr Stromer von Reichenbach in 1911. This gigantic theropod possessed highly derived cranial and vertebral features sufficiently distinct for it to be designated as the nominal genus of the clade Spinosauridae. Unfortunatelly, the holotype of Spinosaurus aegyptiacus was destroyed after a British Royal Air Force raid bombed the museum and incinerated its collections. Only two photographs of the holotype of Spinosaurus aegyptiacus were recovered in the archives of the Paläontologische Museum in June 2000, after they were donated to the museum by Ernst Stromer’s son, Wolfgang Stromer, in 1995. These photographs provide additional insight into the anatomy of the holotype specimen of the animal.

Almost a century later, a partial skeleton of a subadult individual of S. aegyptiacus was discovered in the Cretaceous Kem Kem beds of south-eastern Morocco. At the time of deposition, this part of Morocco was located on the southern margin of the Tethys Ocean and it was characterized by an extensive fluvial plain dominated by northward flowing rivers and terminating in broad deltaic systems on Tethys’ southern shores. The neotype of S. aegyptiacus preserves portions of the skull, axial column, pelvic girdle, and limbs. An international team led by Nizar Ibrahim published the first description of the fossil in 2014 and suggested that Spinosaurus may have been specialised to spend a considerable portion of their lives in water.

 

Selected caudal vertebrae and chevrons of Spinosaurus. From Ibrahim et al., 2020.

Spinosaurus clearly show some adaptations to a partially or predominantly piscivorous diet (because of their morphological convergence with those of crocodilians and other fish-eating reptiles, isolated spinosaurid teeth have frequently been misinterpreted). Furthermore, the presence of a short, robust femur with hypertrophied flexor attachment and the low, flat-bottomed pedal claws are consistent with aquatic foot-propelled locomotion. Now, the description of a nearly complete and partially articulated tail of S. aegyptiacus reinforces the hypothesis that this giant theropod spent plenty of time underwater.

Proximal and distal elements of the tail are complete and preserved in three dimensions, indicating a minimal taphonomic distortion. The preserved tail is approximately 400 cm long. The zygapophyses are significantly less developed than in most tetanurans, hinting at a different functional capacity for the tail in this taxon. The neural arches are also distinctive elements of the Spinosaurus tail, while the morphology of the neural spines shows considerable variation. The elongate neural and haemal arches result in a tail shape that is markedly vertically expanded and has an extensive lateral surface area. The highly specialized morphology of the Spinosaurus tail allowed it to function as a propulsive structure for aquatic locomotion. The anterior positioning of the center of mass within the ribcage may have also enhanced balance during aquatic movement. The model proposed by Ibrahim indicates that Spinosaurus tail shape was capable of generating more than 8 times the thrust of the tail shapes of other theropods, and achieved 2.6 times the efficiency.

 

 

References:

Ibrahim, N., Maganuco, S., Dal Sasso, C. et al. Tail-propelled aquatic locomotion in a theropod dinosaur. Nature (2020). https://doi.org/10.1038/s41586-020-2190-3

Ibrahim, N., Sereno, P. C., Dal Sasso, C., Maganuco, S., Fabbri, M., Martill, D. M., Zouhri, S., Myhrvold, N., Iurino, D. A. (2014). Semiaquatic adaptations in a giant predatory dinosaur. Science, 345(6204), 1613–1616. doi:10.1126/science.1258750 

HONE, D. W. E. and HOLTZ, T. R. (2017), A Century of Spinosaurs – A Review and Revision of the Spinosauridae with Comments on Their Ecology. Acta Geologica Sinica, 91: 1120–1132. doi: 10.1111/1755-6724.13328

Introducing Lajasvenator

Preserved elements of Lajasvenator ascheriae. From Coria et al., 2019

The Cretaceous beds of Patagonia have yielded the most comprehensive record of Cretaceous theropods from Gondwana and includes at least five main theropod lineages: Abelisauroidea, Carcharodontosauridae, Megaraptora, Alvarezsauridae, and Unenlagiidae. The best represented theropod clades in the Late Cretaceous terrestrial strata of the Neuquén Basin are the Abelisauroidea and the Carcharodontosauridae. Most discoveries come from continental units of ages ranging from Barremian to Maastrichtian. The lowest levels of the Cretaceous are well exposed in the marine and terrestrial deposits of the Mulichinco and Bajada Colorada formations.
The Carcharodontosauridae includes the largest land predators in the early and middle Cretaceous of Gondwana, like the popular Giganotosaurus carolinii, and in some way, they were considered as ecological equivalents to the Laurasian tyrannosauroids. The group evolved large skulls surpassing the length of the largest skull of Tyrannosaurus rex; and some derivaded forms had heavily sculptured facial bones. Another common trait is the fusion of cranial bones. Lajasvenator ascheriae, a new specimen from the Valanginian Mulichinco Formation, represents the oldest Cretaceous carcharodontosaurid from South America. The name derived from the Lajas, the city near where the specimen was found; and venator, a Latin word for hunter. The specific name honors Susana Ascheri, owner of the land where the fossil was discovered.

The holotype (MLL-PV-005) of this medium-sized theropod is an incomplete but partially articulated skeleton that includes a partial skull, partially articulated presacral vertebral series, four articulated caudal vertebra and fragments of the pelvic girdle. A second specimen (MLL-PV-Pv-007) includes the anterior ends of both dentaries, a quadratojugal, and fragments of cervical vertebrae, ribs and a possible tarsal bone. The holotype of Lajasvenator was collected in 2010 during fieldwork at Pilmatué. The second specimen was recovered in 2012.

Lajasvenator exhibits anterior projections on cervical prezygapophyses, lip-like crests on the lateral surfaces of cervical postzygapophyses, and bilobed anterior processes on cervical ribs. The phylogenetic analysis indicates that Lajasvenator is clearly nested in a basal position within Carcharodontosauridae.

References:

Coria, R.A., Currie, Currie, P.J., Ortega, F., Baiano, M.A., An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina, Cretaceous Research (2019) https://doi.org/10.1016/j.cretres.2019.104319
Novas, F.E., et al., Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia, Cretaceous Research (2013), http://dx.doi.org/10.1016/j.cretres.2013.04.001

Introducing Kaijutitan, the strange beast.

The entrance to the town of Rincón de los Sauces.

Since the discovery of dinosaur remains in the Neuquen basin in 1882, Argentina has gained the title of Land of the Giants. The tittle was reinforced by the discoveries of titanosaurs like Argentinosaurus, Dreadnoughtus, Notocolossus, Puertasaurus, and Patagotitan. The study of this diverse group of sauropod dinosaurs embrace an extensive list of important contributions, which started with Richard Lydekker’s pioneering work on Patagonian dinosaurs, and by the classic Friedrich von Huene monograph on Argentinean saurischians and ornithischians.

Titanosaurus were a diverse group of sauropod dinosaurs represented by more than 30 genera, which included all descendants of the more recent common ancestor of Andesaurus and Saltasaurus. The group includes the smallest (e.g. Rinconsaurus, Saltasaurus; with estimated body masses of approximately 6 tonnes) and the largest sauropods known to date. They had their major radiation during the middle Early Cretaceous. The evolution of body mass in this clade is key element to understand sauropod evolution.

 

Cranial elements of MAU-Pv-CM-522/1. From Filippi et al., 2019.

Kaijutitan maui, is the first basal sauropod titanosaur from the Sierra Barrosa Formation (Upper Coniacian, Upper Cretaceous). The holotype (MAU-Pv-CM-522) consists of cranial, axial, and appendicular elements presenting an unique combination of plesiomorphic and apomorphic characters. The generic name Kaijutitan is derived from Kaiju, Japanese word that means “strange beast” or “monster”, and titan, from the Greek “giant”.  The species name refers to the acronym of the Museo Municipal Argentino Urquiza, Rincon de los Sauces, Neuquén, Argentina.

The cranial elements of this specimen include the complete neurocranium (the supraoccipital, exoccipital, left paraoccipital process, left exoccipital-opisthotic-prootic complex, left laterosphenoid and orbitosphoid, and basioccipital-basisphenoid complex). The impossibility of recognizing clear sutures suggest an ontogenetic adult stage of the specimen. One of the most notable autapomorphies exhibited by Kaijutitan is the anterior cervical vertebra with bifid neural spine, a feature usually found in diplodocids and dicraeosaurids. Unfortunately, the femur and humerus of Kaijutitan maui are incomplete, therefore the body mass of this titanosaur can only be estimated by comparison with other titanosauriforms. Kaijutitan would have had a body mass similar or intermediate to that of Giraffatitan (38.000 kg) and Notocolossus (60.398 kg).

 

References:

Filippi, L.S., Salgado, L., Garrido, A.C., A new giant basal titanosaur sauropod in the Upper Cretaceous (Coniacian) of the Neuquén Basin, Argentina, Cretaceous Research, https://doi.org/10.1016/j.cretres.2019.03.008.

Introducing Moros intrepidus, the harbinger of doom.

Moros intrepidus. Credit: Jorge Gonzalez

Tyrannosauroidea, the superfamily of carnivorous dinosaurs that includes the iconic Tyrannosaurus rex, originated in the Middle Jurassic, approximately 165 million years ago, and was a dominant component of the dinosaur faunas of the Northern Hemisphere. All tyrannosaurs were bipedal predators characterized by premaxillary teeth with a D-shaped cross section, fused nasals, extreme pneumaticity in the skull roof and lower jaws, a pronounced muscle attachment ridge on the ilium, and an elevated femoral head. But for most of their evolutionary history, tyrannosauroids were mostly small-bodied animals and only reached gigantic size during the final 20 million years of the Cretaceous. Now, the discovery of a new, diminutive tyrannosauroid, Moros intrepidus gen. et sp. nov., shed lights on the successful radiation of Campanian tyrannosauroids.

The holotype (NCSM 33392), preserves a partial right hind limb including portions of the femur, tibia, second and fourth metatarsals, and phalanges of the fourth pedal digit. It was recovered from the lower Mussentuchit Member (6–7 m above the Ruby Ranch contact), upper Cedar Mountain Formation, Emery County, Utah, USA. This small-bodied, gracile-limbed tyrannosauroid lived about 96 million years ago. The name derived from Greek word Moros (an embodiment of impending doom) in reference to the establishment of the Cretaceous tyrannosauroid lineage in NA, and the Latin word intrepidus (intrepid), in reference to the hypothesized intracontinental dispersal of tyrannosaurs during this interval.

Bone microstructure of M. intrepidus (NCSM 33392). From Zanno et al., 2019.

NCSM 33392 derives from a skeletally immature individual (6-7 years) nearing adult size . According to the histological analysis, M. intrepidus exhibits a moderate growth rate, similar to Guanlong, a more primitive tyrannosauroid from the Late Jurassic of China. By contrast, large-bodied, tyrannosaurines from the last stages of the Cretaceous, like Gorgosaurus, were already triple their masses at similar ages. M. intrepidus suggests that North American tyrannosauroids were restricted to small sizes for a protracted period of ~15 million years and at some point at the Turonian, they embarked on a trend of rapid body size increases, to became the top predators of the Cretaceous.

 

References:

Zanno, L.E, Tucker, R.T., Canoville, A., Avrahami, H.M., Gates, T.A., Makovicky, P.J. (2019), Diminutive fleet-footed tyrannosauroid narrows the 70-million-year gap in the North American fossil record, Communications Biology, DOI: 10.1038/s42003-019-0308-7

A mid-Cretaceous enantiornithine frozen in time

Overview of HPG-15-1 in right lateral view. (From Xing et al., 2017)

Overview of HPG-15-1 in right lateral view. (From Xing et al., 2017)

Amber from the Hukawng Valley in northern Myanmar, called Burmese amber, has been commercially exploited for millennia. Of the seven major deposits of amber from the Cretaceous Period, Burmese amber has probably the most diverse paleobiota, including the tail of a non-avian coelurosaurian theropod, and three juvenile enantiornithine birds. The third specimen, HPG-15-1, is the most complete fossil bird discovered in Burmese amber. It comes from the Angbamo site, and measures approximately 86 mm x 30 mm x 57 mm, and weighs 78 g. It  was encapsulated during the earliest stages of its feather production, and  plumage preserves an unusual combination of precocial and altricial features unlike any living hatchling bird.

 Details of the head in HPG-15-1. A, x-ray µCT reconstruction in left lateral view

Details of the head in HPG-15-1. A, x-ray µCT reconstruction in left lateral view (From Xing et al., 2017)

The skull was split when the amber was cut. The rostrum is preserved in one section and the neck and most of the braincase in the other. The skull is mesorostrine. A  single tooth is visible in the left premaxilla. As in Early Cretaceous enantiornithines, the premaxillary corpus is short, forming approximately one-third of the rostrum. The exoccipitals contributed to the dorsal portion of the condyle and were unfused at the time of death. The frontals articulate for most of their length with a small gap between their rostral ends as in Archaeopteryx.  The inner ear and its semicircular canals are preserved. There are at least six articulated cervical vertebrae, including the atlas and axis, preserved in articulation with the skull. The post-axial vertebrae are rectangular with large neural canals, low and caudally displaced neural spines, and a ventral keel as in many enantiornithines. The articulated skull and series of cervical vertebrae bear plumage in dense fields. The individual feathers  are dark brown in color, and appear to consist of tufts of four or more barbs. Skin is preserved as a translucent film in unfeathered regions of both the head and neck.

Microstructure and pigmentation of feathers on wing and body of HPG-15-1. Scale bars equal 1 mm in (A, C); 0.5 mm in (B, D). From Xing et al., 2017

The new specimen also preserves a partial distal wing, the distal right tibiotarsus and complete right foot as well as part of the left pes. Both skeletal material and integumentary structures from the wing’s apex are well-preserved. The plumage consists of fragments of some of the primaries, and alula feathers, some of the secondaries and coverts, and traces of contours from the wing base. The hind limbs preserve feathers and traces of skin. The absence of fusion between the tarsals indicates that the specimen is ontogenetically immature. The proportions of the pedal digits suggest an arboreal lifestyle. Plumage within the femoral and crural tracts consists of neoptile feathers with a short or absent rachis. These feathers are nearly transparent, suggesting that they were pale or white. The skin beneath the crural tract is thin and smooth. The tip of the tail clearly preserves the remains of a single large sheathed rectrix.

The slow post-natal growth results in a protracted period of vulnerability, which is reflected in the Enantiornithes by the large number of juveniles found in the fossil record, whereas young juveniles of other Cretaceous bird lineages are unknown.

 

References:

Lida Xing, Jingmai K. O’Connor, Ryan C. McKellar, Luis M. Chiappe, Kuowei Tseng, Gang Li, Ming Bai , A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage, (2017), doi: 10.1016/j.gr.2017.06.001