Volcanism, the Chicxulub impact and the K-Pg event.

The Deccan traps

It was the best of times. It was the worst of times. The end of the Mesozoic era at ca. 66 million years ago (Ma) is marked by one of the most severe biotic crisis in Earth’s history: the Cretaceous-Paleogene (K-Pg) mass extinction. During the event, three-quarters of the plant and animal species on Earth disappeared, including non-avian dinosaurs, other vertebrates, marine reptiles and invertebrates, planktonic foraminifera and ammonites. Marine ecosystems lost about half of their species while freshwater environments shows low extinction rates, about 10% to 22% of genera.

Two events were linked to this mass extinction: the eruption of the Deccan Traps large igneous province, and the Chicxulub meteorite impact. Early work speculated that the Chicxulub impact triggered large-scale mantle melting and initiated the Deccan flood basalt eruption. Precise dating of both, the impact and the flood basalts, show that the earliest eruptions of the Deccan Traps predate the impact. But, the Chicxulub impact, and the enormous Wai Subgroup lava flows of the Deccan Traps continental flood basalts appear to have occurred very close together in time. Recent studies suggest a possible association between the Chicxulub impact and variations in the progression of Deccan Traps eruptions. Seismic modeling indicates that the impact could have generated seismic energy densities of order 0.1–1.0 J/m3 throughout the upper ∼200 km of Earth’s mantle, sufficient to trigger volcanic eruptions worldwide.

Gravity anomaly map of the Chicxulub impact structure (From Wikimedia Commons)

The oceanic crust records the history of temporal variations in seafloor magmatism continuously and at high resolution through geologic time. Around the time of the Chicxulub impact, 23,000 to 230,000 cubic miles of magma erupted out of the mid-ocean ridges, all over the globe. One of the largest eruptive events in Earth’s history. This pulse of global marine volcanism played an important role in the environmental crisis at the end of the Cretaceous, through magmatism by extruding large volumes of basalt and releasing volcanic gases or through enhanced hydrothermal venting driven by magmatic intrusion. Marine volcanism also provides a potential source of oceanic acidification.

The Chicxulub impact released an estimated energy equivalent of 100 teratonnes of TNT and produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere. The decrease of sunlight caused a drastic short-term global reduction in temperature (15 °C on a global average, 11 °C over the ocean, and 28 °C over land). While the surface and lower atmosphere cooled, the tropopause became much warmer, eliminate the tropical cold trap and allow water vapor mixing ratios to increase to well over 1,000 ppmv in the stratosphere. Those events accelerated the destruction of the ozone layer. During this period, UV light was able to reach the surface at highly elevated and harmful levels.

 

References:

Joseph S. Byrnes and Leif Karlstrom, Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism, Sci Adv 4 (2), eaao2994, DOI: 10.1126/sciadv.aao2994

Charles G. Bardeen, Rolando R. Garcia, Owen B. Toon, and Andrew J. Conley, On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections, PNAS 2017 ; published ahead of print August 21, 2017 DOI: 10.1073/pnas.1708980114

Advertisements

The Winds of Winter

Gravity anomaly map of the Chicxulub impact structure (From Wikimedia Commons)

Almost thirty years ago, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that an asteroid collided with the Earth and caused one of the most devastating events in the history of life. The impact created the 180-kilometre wide Chicxulub crater causing widespread tsunamis along the coastal zones of the surrounding oceans and released an estimated energy equivalent of 100 teratons of TNT and produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere.

Three-quarters of the plant and animal species on Earth disappeared, including non-avian dinosaurs, other vertebrates, marine reptiles and invertebrates, planktonic foraminifera and ammonites. Marine ecosystems lost about half of their species while freshwater environments shows low extinction rates, about 10% to 22% of genera.

A time-lapse animation showing severe cooling due to sulfate aerosols from the Chicxulub asteroid impact 66 million years ago (Credit: PKI)

The decrease of sunlight caused a drastic short-term global reduction in temperature (15 °C on a global average, 11 °C over the ocean, and 28 °C over land). While the surface and lower atmosphere cooled, the tropopause became much warmer, eliminate the tropical cold trap and allow water vapor mixing ratios to increase to well over 1,000 ppmv in the stratosphere. Those events accelerated the destruction of the ozone layer. During this period, UV light was able to reach the surface at highly elevated and harmful levels. This phenomenon is called “impact winter”.

Recent drilling of the peak ring of the Chicxulub impact crater has been used to create 3-D numerical simulations of the crater formation. It was estimate that the angle of impact at Chicxulub was ~60° with a downrange direction to the southwest. The new study indicates that the impact may have released around three times as much sulfur and much less carbon dioxide compared with previous calculations, suggesting that surface temperatures were likely to have been significantly reduced for several years and ocean temperatures affected for hundreds of years after the Chicxulub impact.

 

References:

Artemieva, N., Morgan, J., & Expedition 364 Science Party (2017). Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub. Geophysical Research DOI: 10.1002/2017GL074879

 

Charles G. Bardeen, Rolando R. Garcia, Owen B. Toon, and Andrew J. Conley, On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections, PNAS 2017 ; published ahead of print August 21, 2017 DOI: 10.1073/pnas.1708980114

Brugger J.G. Feulner, and S. Petri (2016), Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the CretaceousGeophys. Res. Lett.43,  doi:10.1002/2016GL072241.

 

Dark skies at the end of the Cretaceous

A time-lapse animation showing severe cooling due to sulfate aerosols from the Chicxulub asteroid impact 66 million years ago (Credit: PKI)

Thirty years ago, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that an asteroid collided with the Earth and caused one of the most devastating events in the history of life. The impact created the 180-kilometre wide Chicxulub crater causing widespread tsunamis along the coastal zones of the surrounding oceans and released an estimated energy equivalent of 100 teratons of TNT and produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere. Three-quarters of the plant and animal species on Earth disappeared. Marine ecosystems lost about half of their species while freshwater environments shows low extinction rates, about 10% to 22% of genera.

Recent studies suggest that the amount of sunlight that reached Earth’s surface was reduced by approximately 20%. Photosynthesis stopped and the food chain collapsed. The decrease of sunlight caused a drastic short-term global reduction in temperature (15 °C on a global average, 11 °C over the ocean, and 28 °C over land). While the surface and lower atmosphere cooled, the tropopause became much warmer, eliminate the tropical cold trap and allow water vapor mixing ratios to increase to well over 1,000 ppmv in the stratosphere. Those events accelerated the destruction of the ozone layer. During this period, UV light was able to reach the surface at highly elevated and harmful levels.

Gravity anomaly map of the Chicxulub impact structure (From Wikimedia Commons)

In 1980, Walter Alvarez and his father, Luis Alvarez ignited a huge controversy when they concluded that the anomalous iridium concentration at the K-Pg boundary is best interpreted as the result of an asteroid impact. They even calculated the size of the asteroid (about 7 km in diameter) and the crater that this body might have caused (about 100–200 km across). In 1981, Pemex (a Mexican oil company) identified Chicxulub as the site of a this massive asteroid impact. The crater is more than 180 km (110 miles) in diameter and 20 km (10 miles) in depth, making the feature one of the largest confirmed impact structures on Earth.

 

References:

Charles G. Bardeen, Rolando R. Garcia, Owen B. Toon, and Andrew J. Conley, On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections, PNAS 2017 ; published ahead of print August 21, 2017 DOI: 10.1073/pnas.1708980114

Brugger J.G. Feulner, and S. Petri (2016), Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the CretaceousGeophys. Res. Lett.43,  doi:10.1002/2016GL072241.

Climate model simulations at the end of the Cretaceous.

gg_60212w_crater

Artist’s reconstruction of Chicxulub crater 66 million years ago.

About thirty years ago, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that a 10 km asteroid collided with the Earth and caused one of the most devastating events in the history of life. The impact created the 180-kilometre wide Chicxulub crater causing widespread tsunamis along the coastal zones of the surrounding oceans and released an estimated energy equivalent of 100 teratons of TNT and produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere.

To model the climatic effects of the impact, a team of scientist from the Potsdam Institute for Climate Impact Research (PIK), use literature information from geophysical impact modeling indicating that for a 2.9 km thick target region consisting of 30% evaporites and 70% water-saturated carbonates and a dunite projectile with 50% porosity, a velocity of 20 km/s and a diameter between 15 and 20 km, a sulfur mass of 100 Gt is produced. This is about 10,000 times the amount of sulfur released during the 1991 Pinatubo eruption. Additionally, for a sulfur mass of 100 Gt, about 1400 Gt of carbon dioxide are injected into the atmosphere, corresponding to an increase of the atmospheric CO2 concentration by 180 ppm. There could be additional CO2 emissions from ocean outgassing and perturbations of the terrestrial biosphere, adding a total of 360 ppm and 540 ppm of CO2. The main result is a severe and persistent global cooling in the decades after the impact. Global annual mean temperatures over land dropped to -32C in the coldest year and continental temperatures in the tropics reaching a mere -22C. This model is supported by a migration of cool, boreal dinoflagellate species into the subtropic Tethyan realm directly across the K–Pg boundary interval and the ingression of boreal benthic foraminifera into the deeper parts of the Tethys Ocean, interpreted to reflect millennial timescale changes in the ocean circulation after the impact (Vellekoop, 2014).

A time-lapse animation showing severe cooling due to sulfate aerosols from the Chicxulub asteroid impact 66 million years ago (Credit: PKI)

A time-lapse animation showing severe cooling due to sulfate aerosols from the Chicxulub asteroid impact 66 million years ago (Credit: PKI)

References:

Brugger J., G. Feulner, and S. Petri (2016), Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous, Geophys. Res. Lett., 43,  doi:10.1002/2016GL072241.

Alvarez, L. W., W. Alvarez, F. Asaro, and H. V. Michel (1980), Extraterrestrial Cause for the Cretaceous-Tertiary Extinction, Science, 208 (4448), 1095{1108, doi: 10.1126/science.208.4448.1095.

Galeotti, S., H. Brinkhuis, and M. Huber (2004), Records of post Cretaceous-Tertiary boundary millennial-scale cooling from the western Tethys: A smoking gun for the impact-winter hypothesis?, Geology, 32, 529, doi:10.1130/G20439.1

Johan Vellekoop, Appy Sluijs, Jan Smit, Stefan Schouten, Johan W. H. Weijers, Jaap S. Sinningh Damsté, and Henk Brinkhuis, Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary, PNAS (2014) doi: 10.1073/pnas.1319253111