“Lucifer’s Hammer killed the dinosaurs”

Lucifer’s Hammer Hardcover (1977)

The end of the Mesozoic era at ca. 66 million years ago (Ma) is marked by one of the most severe biotic crisis in Earth’s history: the Cretaceous-Paleogene (K-Pg) mass extinction. During the event, three-quarters of the plant and animal species on Earth disappeared, including non-avian dinosaurs, pterosaurs, marine reptiles, ammonites, and planktonic foraminifera. Two planetary scale disturbances were linked to this mass extinction event: the eruption of the Deccan Traps large igneous province, and the collision of an asteroid of more than 10 km in diameter with the Yucatan Peninsula.

“Lucifer’s Hammer”, written by Larry Niven and Jerry Pournelle, was the first major science fiction novel to try to deal realistically with the planetary emergency of an impact event. It was published in 1977. Almost at the same time, the discovery of anomalously high abundance of iridium and other platinum group elements in the Cretaceous/Palaeogene (K-Pg) boundary led to the hypothesis that an asteroid collided with the Earth and caused one of the most devastating events in the history of life.

Gravity anomaly map of the Chicxulub impact structure (From Wikimedia Commons)

“Lucifer’s Hammer killed the dinosaurs,” said US physicist Luis Alvarez, in a lecture on the geochemical evidence he and his son found of a massive impact at the end of the Cretaceous period. A year later, Pemex (a Mexican oil company) identified Chicxulub as the site of this massive asteroid impact. The crater is more than 180 km (110 miles) in diameter and 20 km (10 miles) in depth. The impact released an estimated energy equivalent of 100 teratonnes of TNT, induced earthquakes, shelf collapse around the Yucatan platform, and widespread tsunamis that swept the coastal zones of the surrounding oceans.

The event also produced high concentrations of dust, soot, and sulfate aerosols in the atmosphere. Global forest fires might have raged for months. Photosynthesis stopped and the food chain collapsed. The combination of dust and aerosols precipitated a severe impact winter in the decades after impact. Ocean acidification was the trigger for mass extinction in the marine realm. Acidification affects the biogeochemical dynamics of calcium carbonate, organic carbon, nitrogen, and phosphorus in the ocean and interferes with a range of processes including growth, calcification, development, reproduction and behaviour in a wide range of marine organisms like planktonic coccolithophores, foraminifera, echinoderms, corals, and coralline algae. Additionaly, ocean acidification can intensify the effects of global warming, in a dangerous feedback loop.

The Deccan traps

Early work speculated that the Chicxulub impact triggered large-scale mantle melting and initiated the Deccan flood basalt eruption. Precise dating of both, the impact and the flood basalts, show that the earliest eruptions of the Deccan Traps predate the impact. But, the Chicxulub impact, and the enormous Wai Subgroup lava flows of the Deccan Traps continental flood basalts appear to have occurred very close together in time. Marine volcanism also provides a potential source of oceanic acidification, but a recemt study by Yale University indicates that the sudden ocean acidification was caused by the Chicxulub bolide impact (and not by the volcanic activity) that vaporised rocks containing sulphates and carbonates, causing sulphuric acid and carbonic acid to rain down. The evidence came from the shells of planktic and benthic foraminifera. More recently, a new study focused on carbon cycle modeling and paleotemperature records shows that the Chicxulub impact was the primary driver of the end-Cretaceous mass extinction.The global temperature compilation reveals that ~50% of Deccan Trap CO2 outgassing occurred well before the impact. Additionalty, the Late Cretaceous warming event attributed to Deccan degassing is of a comparable size to small warming events in the Paleocene and early Eocene.

P.M. Hull et al., “On impact and volcanism across the Cretaceous-Paleogene boundary,” Science (2019). Vol. 367, Issue 6475, pp. 266-272 https://science.sciencemag.org/content/367/6475/266

Alvarez, L., W. Alvarez, F. Asaro, and H.V. Michel. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction: Experimental results and theoretical interpretation. Science 208:1095–1108.

Michael J. Henehan el al., “Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact,” PNAS (2019). www.pnas.org/cgi/doi/10.1073/pnas.1905989116