Introducing Jinguofortis perplexus.

Photograph of main slab of J. perplexus (Credit: Wang et al., 2018)

Birds originated from a theropod lineage more than 150 million years ago. By the Early Cretaceous, they diversified, evolving into a number of groups of varying anatomy and ecology. In recent years, several discovered fossils of theropods and early birds have filled the morphological, functional, and temporal gaps along the line to modern birds. Most of these fossils are from the Jehol Biota of northeastern China, dated between approximately 130.7 and 120 million years ago. The Jehol Biota provides an incredibly detailed picture of early birds, including Jeholornis, slightly more derived than Archaeopteryx, that lived with Sapeornis, Confuciusornis, and the earliest members of Enantiornithes and Ornithuromorpha. The clade Ornithothoraces (characterized by a keeled sternum, elongate coracoid, narrow furcula, and reduced hand) along with Jeholornithiformes, Confuciusornithiformes and Sapeornithiformes, form the clade Pygostylia. Basal members of this clade are essential to understand the evolution of the modern avian bauplan. The trait that gives the group its name is the presence of a pygostyle, a set of fused vertebrae at the end of the tail.

Jinguofortis perplexus gen. et sp. nov., from the Early Cretaceous of China, exhibits a mosaic combination of plesiomorphic nonavian theropod features like a fused scapulocoracoid and more derived traits, including the earliest evidence of reduction in manual digits among birds. The generic name is derived from “jinguo” (Mandarin), referring to female warrior, and “fortis” for brave (Latin). The specific name is derived from Latin “perplexus,” and highlights the combination of plesiomorphic and derived features present in the holotype specimen.

Holotype of J. perplexus. (Scale bar, 5 cm.) From Wang et al., 2018.

The holotype (IVPP V24194) was collected near the village of Shixia, Hebei Province, China. Biostratigraphic correlation confirms that the fossil-bearing horizon belongs to the Lower Cretaceous Dabeigou Formation of the Jehol Biota (127 ± 1.1 Ma). The holotype of Jinguofortis is subadult or adult given the bone histology, the presence of a fused carpometacarpus, tarsometatarsus, and pygostyle. The body mass estimated is 250.2 g, the wing span is 69.7 cm, with a wing area of 730 cm2.

Jinguofortis exhibits the following features: dentary with at least six closely packed teeth; scapula and coracoid fused into a scapulocoracoid in the adult; sternum ossified; deltopectoral crest of humerus large and not perforated; minor metacarpal strongly bowed caudally; minor digit reduced with manual phalangeal formula of 2–3-2; metatarsals III and IV subequal in distal extent; pedal phalanx II-2 with prominent heel proximally; and forelimb 1.15 times longer than hindlimb. The highly vascularized fibro-lamellar bone tissue indicates that Jinguofortis grew rapidly in early development, but the growth rate had slowed substantially by the time of death. The histology of Jinguofortis is comparable to that of Chongmingia and Confuciusornis, suggesting a similar growth pattern shared among these basal pygostylians. The phylogenetic analysis recovered Jinguofortis as the sister to Chongmingia. The clade uniting these two specimens is Jinguofortisidae, and constitutes the second most basal pygostylian lineage.

Forelimb of Jinguofortis. (A) Photograph. (B) Line drawing. (Scale bar, 1 cm.) From Wang et al., 2018.

Early avian flight clearly underwent a series of evolutionary experiments, as demonstrated by the diverse combination of plesiomorphic and derived features found among early extinct birds. The most striking primitive feature present in the flight apparatus of Jinguofortis is the fused scapulocoracoid, present predominantly in nonavian theropods. The convergently evolved scapulocoracoid in jinguornithids and confuciusornithiforms suggests that these basal clades likely reacquired a similar level of osteogenesis (or gene expression) present in their nonavian theropod ancestors.

 

References:

Wang, M., Stidham, T. A., & Zhou, Z. (2018). A new clade of basal Early Cretaceous pygostylian birds and developmental plasticity of the avian shoulder girdle. Proceedings of the National Academy of Sciences, 201812176. doi:10.1073/pnas.1812176115

Advertisements

2 thoughts on “Introducing Jinguofortis perplexus.

  1. Nice article.
    In the last p’graph you incorrectly call the family ‘jinguornithids’ – an innocent and minor mistake, also made in the original paper. 🙂
    IIRC, Jeholornis is not a member of Pygostylia.
    BTW, Andrea Cau thinks the flightless Balaur might be a jinguofortisid.

  2. Pingback: Fossil Friday Roundup: September 28, 2018 | PLOS Paleo Community

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s