An avian vocal organ from the Mesozoic.

The Vegavis iaai specimen showing the location of the syrinx. (Adapted from Clarke et al., 2016)

The Vegavis iaai specimen showing the location of the syrinx. (Adapted from Clarke et al., 2016)

Birds originated from a theropod lineage more than 150 million years ago. Their evolutionary history is one of the most enduring and fascinating debates in paleontology. In recent years, several discovered fossils of theropods and early birds have filled the morphological, functional, and temporal gaps along the line to modern birds. The earliest diversification of extant birds (Neornithes) occurred during the Cretaceous period and after the mass extinction event at the Cretaceous-Paleogene (K-Pg) boundary, the Neoaves, the most diverse avian clade, suffered a rapid global expansion and radiation. Today, with more than 10500 living species, birds are the most species-rich class of tetrapod vertebrates.

In the mid-nineteenth century, T. H. Huxley recognized that birds were most closely related to dinosaurs. He also named the unique vocal organ in birds as the syrinx. Located at the base of a bird’s trachea, the syrinx consists of specialised cartilaginous structures, connective tissue masses, membranes and muscles. The oldest known remains of a syrinx was found within the fossilised, partial skeleton of a bird, known as Vegavis iaai, from the Late Cretaceous (66 mya) of Antarctica.

Vegavis iaai by Gabriel Lio. / Photo: CONICET

Vegavis iaai by Gabriel Lio. / Photo: CONICET

The Vegavis iaai holotype specimen from Vega Island, western Antarctica, was discovered in 1992 by a team from the Argentine Antarctic Institute, but was only described as a new species in 2005 (Clarke et al., 2005). It belonged to the clade Anseriformes, a group that includes ducks, geese and swans. Vegavis exhibits the fusion of cartilage rings and asymmetry between the left and right sides of the syrinx, that are useful for making comparisons with structural data from the present-day birds. Fused rings in Vegavis form a well-mineralized pessulus, a derived neognath bird feature, proposed to anchor enlarged vocal folds or labia. Although mineralized structures of the syrinx in Vegavis and many parts of extant Anatidae show asymmetry, Presbyornis, Chauna and Galliformes lack this feature. The absence of known tracheobronchial remains in all other Mesozoic dinosaurs may be indicative that a complex syrinx was a late arising feature in the evolution of birds, well after the origin of flight and respiratory innovations.



Julia A. Clarke, Sankar Chatterjee, Zhiheng Li, Tobias Riede, Federico Agnolin, Franz Goller, Marcelo P. Isasi, Daniel R. Martinioni, Francisco J. Mussel and Fernando E. Novas. Fossil evidence of the avian vocal organ from the Mesozoic. Nature, 2016 DOI: 10.1038/nature19852

Clarke, J. A., C. P. Tambussi, J. I. Noriega, G. M. Erickson, and R. A. Ketcham. 2005. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305-308.

Larsen, O. N.; Franz Goller (2002). “Direct observation of syringeal muscle function in songbirds and a parrot”. The Journal of Experimental Biology. 205 (Pt 1): 25–35.

Xing Xu, Zhonghe Zhou, Robert Dudley, Susan Mackem, Cheng-Ming Chuong, Gregory M. Erickson, David J. Varricchio, An integrative approach to understanding bird origins, Science, Vol. 346 no. 6215, DOI: 10.1126/science.1253293.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s