The Great Acceleration.


Iron and Coal, 1855–60, by William Bell Scott illustrates the central place of coal and iron working in the industrial revolution (From Wikimedia Commons)

Iron and Coal, 1855–60, by William Bell Scott illustrates the central place of coal and iron working in the industrial revolution (From Wikimedia Commons)

During a meeting of the International Geosphere-Biosphere Programme (IGBP) celebrated in Mexico, in 2000, the Vice-Chair of IGBP, Paul Crutzen, proposed the use of the term Anthropocene to designate the last three centuries of human domination of earth’s ecosystems, and to mark the end of the current Holocene geological epoch. He suggested that the start date of the Anthropocene must be placed near the end of the 18th century, about the time that the industrial revolution began, and noted that such a start date would coincide with the invention of the steam engine by James Watt in 1784.

Although there is no agreement on when the Anthropocene started, researchers accept that the Anthropocene is a time span marked by human interaction with Earth’s biophysical system. It has been defined, primarily, by significant and measurable increases in anthropogenic greenhouse gas emissions from ice cores, and other geologic features including synthetic organic compounds and radionuclides. Eugene Stoermer, in an interview in 2012, proposed that the geological mark for the Anthropocene was the isotopic signature of the first atomic bomb tests. Hence,  Anthropocene deposits would be those that may include the globally distributed primary artificial radionuclide signal (Zalasiewicz et al, 2015).



Alternative temporal boundaries for the Holocene–Anthropocene boundary (calibrated in thousand of years before present) From Smith 2013


Human activity is a major driver of the dynamics of Earth system. After the World War II, the impact of human activity on the global environment dramatically increased. This period associated with very rapid growth in human population, resource consumption, energy use and pollution, has been called the Great Acceleration.

During the Great Acceleration, the atmospheric CO2 concentration grew, from 311 ppm in 1950 to 369 ppm in 2000 (W. Steffen et al., 2011). About one third of the carbon dioxide released by anthropogenic activity is absorbed by the oceans. When CO2 dissolves in seawater, it produce carbonic acid. The carbonic acid dissociates in the water releasing hydrogen ions and bicarbonate. Then, the formation of bicarbonate removes carbonate ions from the water, making them less available for use by organisms. Ocean acidification affects the biogeochemical dynamics of calcium carbonate, organic carbon, nitrogen, and phosphorus in the ocean, and will directly impact in a wide range of marine organisms that build shells from calcium carbonate, like planktonic coccolithophores, molluscs,  echinoderms, corals, and coralline algae.

Clastic plastiglomerate containing molten plastic and basalt and coral fragments (Image adapted from P. Corcoran et al., 2014)

Clastic plastiglomerate containing molten plastic and basalt and coral fragments (Image adapted from P. Corcoran et al., 2013)

One important marker for the future geological record is a new type of rock formed by anthropogenically derived materials. This type of rock has been named plastiglomerate, and has been originally described on Kamilo Beach, Hawaii. This anthropogenically influenced material has great potential to form a marker horizon of human pollution, signaling the occurrence of the Anthropocene epoch (Corcoran et al., 2013).

Climate change, shifts in oceanic pH, loss of biodiversity and widespread pollution have all been identified as potential planetary tipping point. Since the industrial revolution, the wave of animal and plant extinctions that began with the late Quaternary has accelerated. Calculations suggest that the current rates of extinction are 100–1000 times above normal, or background levels. We are in the midst of  the so called “Sixth Mass Extinction”.

Dealing with the transition into the Anthropocene requires careful consideration of its social, economic and biotic effects. In his master book L’Evolution Créatrice (1907), French philosopher Henri Bergson, wrote:  “A century has elapsed since the invention of the steam engine, and we are only just beginning to feel the depths of the shock it gave us.”



Will Steffen, Wendy Broadgate, Lisa Deutsch, Owen Gaffney, and Cornelia Ludwig. The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review, January 16, 2015 DOI: 10.1177/2053019614564785

Jan Zalasiewicz et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, published online January 12, 2015; doi: 10.1016/j.quaint.2014.11.045

Smith, B.D., Zeder, M.A., The onset of the Anthropocene. Anthropocene (2013),

Ellis, E.C., 2011. Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society A 369, 1010–1035.



One thought on “The Great Acceleration.

  1. Pingback: Whewell’s Gazette: Vol. #32 | Whewell's Ghost

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s